261 research outputs found

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    Fault detection and isolation in a networked multi-vehicle unmanned system

    Get PDF
    Recent years have witnessed a strong interest and intensive research activities in the area of networks of autonomous unmanned vehicles such as spacecraft formation flight, unmanned aerial vehicles, autonomous underwater vehicles, automated highway systems and multiple mobile robots. The envisaged networked architecture can provide surpassing performance capabilities and enhanced reliability; however, it requires extending the traditional theories of control, estimation and Fault Detection and Isolation (FDI). One of the many challenges for these systems is development of autonomous cooperative control which can maintain the group behavior and mission performance in the presence of undesirable events such as failures in the vehicles. In order to achieve this goal, the team should have the capability to detect and isolate vehicles faults and reconfigure the cooperative control algorithms to compensate for them. This dissertation deals with the design and development of fault detection and isolation algorithms for a network of unmanned vehicles. Addressing this problem is the main step towards the design of autonomous fault tolerant cooperative control of network of unmanned systems. We first formulate the FDI problem by considering ideal communication channels among the vehicles and solve this problem corresponding to three different architectures, namely centralized, decentralized, and semi-decentralized. The necessary and sufficient solvability conditions for each architecture are also derived based on geometric FDI approach. The effects of large environmental disturbances are subsequently taken into account in the design of FDI algorithms and robust hybrid FDI schemes for both linear and nonlinear systems are developed. Our proposed robust FDI algorithms are applied to a network of unmanned vehicles as well as Almost-Lighter-Than-Air-Vehicle (ALTAV). The effects of communication channels on fault detection and isolation performance are then investigated. A packet erasure channel model is considered for incorporating stochastic packet dropout of communication channels. Combining vehicle dynamics and communication links yields a discrete-time Markovian Jump System (MJS) mathematical model representation. This motivates development of a geometric FDI framework for both discrete-time and continuous-time Markovian jump systems. Our proposed FDI algorithm is then applied to a formation flight of satellites and a Vertical Take-Off and Landing (VTOL) helicopter problem. Finally, we investigate the problem of fault detection and isolation for time-delay systems as well as linear impulsive systems. The main motivation behind considering these two problems is that our developed geometric framework for Markovian jump systems can readily be applied to other class of systems. Broad classes of time-delay systems, namely, retarded, neutral, distributed and stochastic time-delay systems are investigated in this dissertation and a robust FDI algorithm is developed for each class of these systems. Moreover, it is shown that our proposed FDI algorithms for retarded and stochastic time-delay systems can potentially be applied in an integrated design of FDI/controller for a network of unmanned vehicles. Necessary and sufficient conditions for solvability of the fundamental problem of residual generation for linear impulsive systems are derived to conclude this dissertation

    Distributed Target Tracking and Synchronization in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks provide useful information for various applications but pose challenges in scalable information processing and network maintenance. This dissertation focuses on statistical methods for distributed information fusion and sensor synchronization for target tracking in wireless sensor networks. We perform target tracking using particle filtering. For scalability, we extend centralized particle filtering to distributed particle filtering via distributed fusion of local estimates provided by individual sensors. We derive a distributed fusion rule from Bayes\u27 theorem and implement it via average consensus. We approximate each local estimate as a Gaussian mixture and develop a sampling-based approach to the nonlinear fusion of Gaussian mixtures. By using the sampling-based approach in the fusion of Gaussian mixtures, we do not require each Gaussian mixture to have a uniform number of mixture components, and thus give each sensor the flexibility to adaptively learn a Gaussian mixture model with the optimal number of mixture components, based on its local information. Given such flexibility, we develop an adaptive method for Gaussian mixture fitting through a combination of hierarchical clustering and the expectation-maximization algorithm. Using numerical examples, we show that the proposed distributed particle filtering algorithm improves the accuracy and communication efficiency of distributed target tracking, and that the proposed adaptive Gaussian mixture learning method improves the accuracy and computational efficiency of distributed target tracking. We also consider the synchronization problem of a wireless sensor network. When sensors in a network are not synchronized, we model their relative clock offsets as unknown parameters in a state-space model that connects sensor observations to target state transition. We formulate the synchronization problem as a joint state and parameter estimation problem and solve it via the expectation-maximization algorithm to find the maximum likelihood solution for the unknown parameters, without knowledge of the target states. We also study the performance of the expectation-maximization algorithm under the Monte Carlo approximations used by particle filtering in target tracking. Numerical examples show that the proposed synchronization method converges to the ground truth, and that sensor synchronization significantly improves the accuracy of target tracking

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Discrete Event Simulations

    Get PDF
    Considered by many authors as a technique for modelling stochastic, dynamic and discretely evolving systems, this technique has gained widespread acceptance among the practitioners who want to represent and improve complex systems. Since DES is a technique applied in incredibly different areas, this book reflects many different points of view about DES, thus, all authors describe how it is understood and applied within their context of work, providing an extensive understanding of what DES is. It can be said that the name of the book itself reflects the plurality that these points of view represent. The book embraces a number of topics covering theory, methods and applications to a wide range of sectors and problem areas that have been categorised into five groups. As well as the previously explained variety of points of view concerning DES, there is one additional thing to remark about this book: its richness when talking about actual data or actual data based analysis. When most academic areas are lacking application cases, roughly the half part of the chapters included in this book deal with actual problems or at least are based on actual data. Thus, the editor firmly believes that this book will be interesting for both beginners and practitioners in the area of DES

    Cooperative Vehicle Localization in Networked Systems

    Get PDF

    Distributed implementations of the particle filter with performance bounds

    Get PDF
    The focus of the thesis is on developing distributed estimation algorithms for systems with nonlinear dynamics. Of particular interest are the agent or sensor networks (AN/SN) consisting of a large number of local processing and observation agents/nodes, which can communicate and cooperate with each other to perform a predefined task. Examples of such AN/SNs are distributed camera networks, acoustic sensor networks, networks of unmanned aerial vehicles, social networks, and robotic networks. Signal processing in the AN/SNs is traditionally centralized and developed for systems with linear dynamics. In the centralized architecture, the participating nodes communicate their observations (either directly or indirectly via a multi-hop relay) to a central processing unit, referred to as the fusion centre, which is responsible for performing the predefined task. For centralized systems with linear dynamics, the Kalman filter provides the optimal approach but suffers from several drawbacks, e.g., it is generally unscalable and also susceptible to failure in case the fusion centre breaks down. In general, no analytic solution can be determined for systems with nonlinear dynamics. Consequently, the conventional Kalman filter cannot be used and one has to rely on numerical approaches. In such cases, the sequential Monte Carlo approaches, also known as the particle filters, are widely used as approximates to the Bayesian estimators but mostly in the centralized configuration. Recently there has been a growing interest in distributed signal processing algorithms where: (i) There is no fusion centre; (ii) The local nodes do not have (require) global knowledge of the network topology, and; (iii) Each node exchanges data only within its local neighborhood. Distributed estimation have been widely explored for estimation/tracking problems in linear systems. Distributed particle filter implementations for nonlinear systems are still in their infancy and are the focus of this thesis. In the first part of this thesis, four different consensus-based distributed particle filter implementations are proposed. First, a constrained sufficient statistic based distributed implementation of the particle filter (CSS/DPF) is proposed for bearing-only tracking (BOT) and joint bearing/range tracking problems encountered in a number of applications including radar target tracking and robot localization. Although the number of parallel consensus runs in the CSS/DPF is lower compared to the existing distributed implementations of the particle filter, the CSS/DPF still requires a large number of iterations for the consensus runs to converge. To further reduce the consensus overhead, the CSS/DPF is extended to distributed implementation of the unscented particle filter, referred to as the CSS/DUPF, which require a limited number of consensus iterations. Both CSS/DPF and CSS/DUPF are specific to BOT and joint bearing/range tracking problems. Next, the unscented, consensus-based, distributed implementation of the particle filter (UCD /DPF) is proposed which is generalizable to systems with any dynamics. In terms of contributions, the UCD /DPF makes two important improvements to the existing distributed particle filter framework: (i) Unlike existing distributed implementations of the particle filter, the UCD /DPF uses all available global observations including the most recent ones in deriving the proposal distribution based on the distributed UKF, and; (ii) Computation of the global estimates from local estimates during the consensus step is based on an optimal fusion rule. Finally, a multi-rate consensus/fusion based framework for distributed implementation of the particle filter, referred to as the CF /DPF, is proposed. Separate fusion filters are designed to consistently assimilate the local filtering distributions into the global posterior by compensating for the common past information between neighbouring nodes. The CF /DPF offers two distinct advantages over its counterparts. First, the CF /DPF framework is suitable for scenarios where network connectivity is intermittent and consensus can not be reached between two consecutive observations. Second, the CF /DPF is not limited to the Gaussian approximation for the global posterior density. Numerical simulations verify the near-optimal performance of the proposed distributed particle filter implementations. The second half of the thesis focuses on the distributed computation of the posterior Cramer-Rao lower bounds (PCRLB). The current PCRLB approaches assume a centralized or hierarchical architecture. The exact expression for distributed computation of the PCRLB is not yet available and only an approximate expression has recently been derived. Motivated by the distributed adaptive resource management problems with the objective of dynamically activating a time-variant subset of observation nodes to optimize the network's performance, the thesis derives the exact expression, referred to as the dPCRLB, for computing the PCRLB for any AN/SN configured in a distributed fashion. The dPCRLB computational algorithms are derived for both the off-line conventional (non-conditional) PCRLB determined primarily from the state model, observation model, and prior knowledge of the initial state of the system, and the online conditional PCRLB expressed as a function of past history of the observations. Compared to the non-conditional dPCRLB, its conditional counterpart provides a more accurate representation of the estimator's performance and, consequently, a better criteria for sensor selection. The thesis then extends the dPCRLB algorithms to quantized observations. Particle filter realizations are used to compute these bounds numerically and quantify their performance for data fusion problems through Monte-Carlo simulations
    • …
    corecore