7 research outputs found

    Embryonics: A path to artificial life?

    Get PDF
    Electronic systems, no matter how clever and intelligent they are, cannot yet demonstrate the reliability that biological systems can. Perhaps we can learn from these processes, which have developed through millions of years of evolution, in our pursuit of highly reliable systems. This article discusses how such systems, inspired by biological principles, might be built using simple embryonic cells. We illustrate how they can monitor their own functional integrity in order to protect themselves from internal failure or from hostile environmental effects and how faults caused by DNA mutation or cell death can be repaired and thus full system functionality restored. ©2006 Massachusetts Institute of Technology

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    A Practical Hardware Implementation of Systemic Computation

    Get PDF
    It is widely accepted that natural computation, such as brain computation, is far superior to typical computational approaches addressing tasks such as learning and parallel processing. As conventional silicon-based technologies are about to reach their physical limits, researchers have drawn inspiration from nature to found new computational paradigms. Such a newly-conceived paradigm is Systemic Computation (SC). SC is a bio-inspired model of computation. It incorporates natural characteristics and defines a massively parallel non-von Neumann computer architecture that can model natural systems efficiently. This thesis investigates the viability and utility of a Systemic Computation hardware implementation, since prior software-based approaches have proved inadequate in terms of performance and flexibility. This is achieved by addressing three main research challenges regarding the level of support for the natural properties of SC, the design of its implied architecture and methods to make the implementation practical and efficient. Various hardware-based approaches to Natural Computation are reviewed and their compatibility and suitability, with respect to the SC paradigm, is investigated. FPGAs are identified as the most appropriate implementation platform through critical evaluation and the first prototype Hardware Architecture of Systemic computation (HAoS) is presented. HAoS is a novel custom digital design, which takes advantage of the inbuilt parallelism of an FPGA and the highly efficient matching capability of a Ternary Content Addressable Memory. It provides basic processing capabilities in order to minimize time-demanding data transfers, while the optional use of a CPU provides high-level processing support. It is optimized and extended to a practical hardware platform accompanied by a software framework to provide an efficient SC programming solution. The suggested platform is evaluated using three bio-inspired models and analysis shows that it satisfies the research challenges and provides an effective solution in terms of efficiency versus flexibility trade-off

    Tissu numérique cellulaire à routage et configuration dynamiques

    Get PDF
    In the design of new machines or in the development of new concepts, mankind has often observed nature, looking for useful ideas and sources of inspiration. The design of electronic circuits is no exception, and a considerable number of realizations have drawn inspiration from three aspects of natural systems : the evolution of species (Phylogenesis), the development of an organism starting from a single cell (Ontogenesis), and learning, as performed by our brain (Epigenesis). These three axes, grouped under the acronym POE, have for the most part been exploited separately : evolutionary principles allow to solve problems for which it is hard to find a solution with a deterministic method, while some electronic circuits draw inspiration from healing process in living beings to achieve self-repair, and artificial neural networks have the capability to efficiently execute a wide range of tasks. At this time, no electronic tissue capable of bringing them together seems to exist. The introduction of reconfigurable circuits called Field Programmable Gate Arrays (FPGAs), whose behavior can be redefined as often as desired, made prototyping such systems easier. FPGAs, by allowing a relatively simple implementation in hardware, can considerably increase the systems' performance and are thus extensively used by researchers. However, they lack plasticity, not being able to easily modify themselves without an external intervention. This PhD thesis, developed in the framework of the European POEtic project, proposes to define a new reconfigurable electronic circuit, with the goal of supplying a new substrate for bio-inspired applications that bring all three axes into play. This circuit is mainly composed of a microprocessor and an array of reconfigurable elements, the latter having been designed during this thesis. Evolutionary processes are executed by the microprocessor, while epigenetic and ontogenetic mechanisms are applied in the reconfigurable array, to entities seen as multicellular artificial organisms. Relatively similar to current commercial FPGAs, this subsystem offers however some unique features. First, the basic elements of the array have the capability to partially reconfigure other elements. Auto-replication and differentiation mechanisms can exploit this capability to let an organism grow or to modify its behavior. Second, a distributed routing layer allows to dynamically create connections between parts of the circuit at runtime. With this feature, cells (artificial neurons, for example) implemented in the reconfigurable array can initiate new connections in order to modify the global system behavior. This distributed routing mechanism, one of the major contributions of this thesis, induced the realization of several algorithms. Based on a parallel implementation of Lee's algorithm, these algorithms are totally distributed, no global control being necessary to create new data paths. Four algorithms have been defined implemented in hardware in the form of routing units connected to 3, 4, 6, or 8 neighbors. These units are all identical and are responsible for the routing processes. An analysis of their properties allows us to define the best algorithm, coupled with the most efficient neighborhood, in terms of congestion and of the number of transistors needed for a hardware realization. We finish the routing chapter by proposing a fifth algorithm that, unlike the previous ones, is constructed only through local interactions between routing units. It offers a better scalability, at the price of increased hardware overhead. Finally, the POEtic chip, in which one of our algorithms has been implemented, has been physically realized. We present different POE mechanisms that take advantage of its new features. Among these mechanisms, we can notably cite auto-replication, evolvable hardware, developmental systems, and self-repair. All of these mechanisms have been developed with the help of a circuit simulator, also designed in the framework of this thesis
    corecore