1,942 research outputs found

    Cardio-audio synchronization drives neural surprise response.

    Get PDF
    Successful prediction of future events depends on the brain's capacity to extract temporal regularities from sensory inputs. Neuroimaging studies mainly investigated regularity processing for exteroceptive sensory inputs (i.e. from outside the body). Here we investigated whether interoceptive signals (i.e. from inside the body) can mediate auditory regularity processing. Human participants passively listened to sound sequences presented in synchrony or asynchrony to their heartbeat while concomitant electroencephalography was recorded. We hypothesized that the cardio-audio synchronicity would induce a brain expectation of future sounds. Electrical neuroimaging analysis revealed a surprise response at 158-270 ms upon omission of the expected sounds in the synchronous condition only. Control analyses ruled out that this effect was trivially based on expectation from the auditory temporal structure or on differences in heartbeat physiological signals. Implicit neural monitoring of temporal regularities across interoceptive and exteroceptive signals drives prediction of future events in auditory sequences

    Mental state estimation for brain-computer interfaces

    Get PDF
    Mental state estimation is potentially useful for the development of asynchronous brain-computer interfaces. In this study, four mental states have been identified and decoded from the electrocorticograms (ECoGs) of six epileptic patients, engaged in a memory reach task. A novel signal analysis technique has been applied to high-dimensional, statistically sparse ECoGs recorded by a large number of electrodes. The strength of the proposed technique lies in its ability to jointly extract spatial and temporal patterns, responsible for encoding mental state differences. As such, the technique offers a systematic way of analyzing the spatiotemporal aspects of brain information processing and may be applicable to a wide range of spatiotemporal neurophysiological signals

    Robust asynchronous control of ERP-Based brain-Computer interfaces using deep learning

    Get PDF
    Producción CientíficaBackground and Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) are a promising technology for alternative and augmented communication in an assistive context. However, most approaches to date are synchronous, requiring the intervention of a supervisor when the user wishes to turn his attention away from the BCI system. In order to bring these BCIs into real-life applications, a robust asynchronous control of the system is required through monitoring of user attention. Despite the great importance of this limitation, which prevents the deployment of these systems outside the laboratory, it is often overlooked in research articles. This study was aimed to propose a novel method to solve this problem, taking advantage of deep learning for the first time in this context to overcome the limitations of previous strategies based on hand-crafted features. Methods. The proposed method, based on EEG-Inception, a novel deep convolutional neural network, divides the problem in 2 stages to achieve the asynchronous control: (i) the model detects user’s control state, and (ii) decodes the command only if the user is attending to the stimuli. Additionally, we used transfer learning to reduce the calibration time, even exploring a calibration-less approach. Results. Our method was evaluated with 22 healthy subjects, analyzing the impact of the calibration time and number of stimulation sequences on the system’s performance. For the control state detection stage, we report average accuracies above 91% using only 1 sequence of stimulation and 30 calibration trials, reaching a maximum of 96.95% with 15 sequences. Moreover, our calibration-less approach also achieved suitable results, with a maximum accuracy of 89.36%, showing the benefits of transfer learning. As for the overall asynchronous system, which includes both stages, the maximum information transfer rate was 35.54 bpm, a suitable value for high-speed communication. Conclusions. The proposed strategy achieved higher performance with less calibration trials and stimulation sequences than former approaches, representing a promising step forward that paves the way for more practical applications of ERP-based spellers.Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (grants PID2020-115468RB-I00 and RTC2019-007350-1)Comisión Europea - Fondo Europeo de Desarrollo Regional (cooperation programme Interreg V-A Spain-Portugal POCTEP 2014–2020

    Being first matters: topographical representational similarity analysis of ERP signals reveals separate networks for audiovisual temporal binding depending on the leading sense

    Get PDF
    In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Inter-sensory timing is crucial in this process as only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window (TBW), revealing asymmetries in its size and plasticity depending on the leading input (auditory-visual, AV; visual-auditory, VA). We here tested whether separate neuronal mechanisms underlie this AV-VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV/VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV/VA event-related potentials (ERPs) from the sum of their unisensory constituents, we run a time-resolved topographical representational similarity analysis (tRSA) comparing AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between AV- and VA-maps at each time point (500ms window post-stimulus) and then correlated with two alternative similarity model matrices: AVmaps=VAmaps vs. AVmaps≠VAmaps. The tRSA results favored the AVmaps≠VAmaps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems

    Hybrid EEG-fNIRS asynchronous brain-computer interface for multiple motor tasks

    Get PDF
    Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm—Left-Arm—Right-Hand—Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs) have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes

    Neurobehavioral evidence of interoceptive sensitivity in early infancy

    Get PDF
    Interoception, the sensitivity to visceral sensations, plays an important role in homeostasis and guiding motivated behaviour. It is also considered to be fundamental to self-awareness. Despite its importance, the developmental origins of interoceptive sensitivity remain unexplored. We here provide the first evidence for implicit, flexible interoceptive sensitivity in 5 month old infants using a novel behavioural measure, coupled with an established cortical index of interoceptive processing. These findings have important implications for the understanding of the early developmental stages of self-awareness, self-regulation and socio-emotional abilities

    Development of EEG-based technologies for the characterization and treatment of neurological diseases affecting the motor function

    Get PDF
    This thesis presents a set of studies applying signal processing and data mining techniques in real-time working systems to register, characterize and condition the movement-related cortical activity of healthy subjects and of patients with neurological disorders affecting the motor function. Patients with two of the most widespread neurological affections impairing the motor function are considered here: patients with essential tremor and patients who have suffered a cerebro-vascular accident. The different chapters in the presented thesis show results regarding the normal cortical activity associated with the planning and execution of motor actions with the upper-limb, and the pathological activity related to the patients' motor dysfunction (measurable with muscle electrodes or movement sensors). The initial chapters of the book present i) a revision of the basic concepts regarding the role of the cerebral cortex in the motor control and the way in which the electroencephalographic activity allows its analysis and conditioning, ii) a study on the cortico-muscular interaction at the tremor frequency in patients with essential tremor under the effects of a drug reducing their tremor, and finally iii) a study based on evolutionary algorithms that aims to identify cortical patterns related to the planning of a number of motor tasks performed with a single arm. In the second half of the thesis book, two brain-computer interface systems to be used in rehabilitation scenarios with essential tremor patients and with patients with a stroke are proposed. In the first system, the electroencephalographic activity is used to anticipate voluntary movement actions, and this information is integrated in a multimodal platform estimating and suppressing the pathological tremors. In the second case, a conditioning paradigm for stroke patients based on the identification of the motor intention with temporal precision is presented and tested with a cohort of four patients along a month during which the patients undergo eight intervention sessions. The presented thesis has yielded advances from both the technological and the scientific points of view in all studies proposed. The main contributions from the technological point of view are: ¿ The design of an integrated upper-limb platform working in real-time. The platform was designed to acquire information from different types of noninvasive sensors (EEG, EMG and gyroscopic sensors) characterizing the planning and execution of voluntary movements. The platform was also capable of processing online the acquired data and generating an electrical feedback. ¿ The development of signal processing and classifying techniques adapted to the kind of signal recorded in the two kinds of patients considered in this thesis (patients with essential tremor and patients with a stroke) and to the requirements of online processing and real-time single-trial function desired for BCI applications. Especially in this regard, an original methodology to detect onsets of voluntary movements using slow cortical potentials and cortical rhythms has been presented. ¿ The design and validation in real-time of asynchronous BCI systems using motor planning EEG segments to anticipate or detect when patients begin a voluntary movement with the upper-limb. ¿ The proof of concept of the advantages of an EEG system integrated in a multimodal human-robot interface architecture that constitutes the first multimodal interface using the combined acquisition of EEG, EMG and gyroscopic data, which allows the concurrent characterization of different parts of the body associated with the execution of a movement. The main scientific contributions of this thesis are: ¿ The study of the EEG-based anticipation of voluntary movements presented in Chapter 5 of the thesis was the first demonstration (to the author's knowledge) of the capacity of the EEG signal to provide reliable movement predictions based on single-trial classification of online data of healthy subjects and ET patients. This study also provides, for the first time, the results of a BCI system tested in ET patients and it represents an original approach to BCI applications for this group of patients. ¿ It has been presented the first neurophysiological study using EEG and EMG data to analyze the effects of a drug on cortical activity and tremors of patients with ET. In addition, the obtained results have shown for the first time that a significant correlation exists between the dynamics of specific cortical oscillations and pathological tremor manifestation as a consequence of the drug effects. ¿ It has been proposed for the first time an experiment to inspect whether the EEG signal carries enough information to classify up to seven different tasks performed with a single limb. Both the methodology applied and the validation procedure are also innovative in this sort of studies. ¿ It has been demonstrated for the first time the relevance of combining different cortical sources of information (such as BP and ERD) to estimate the initiation of voluntary movements with the upper-limb. In this line, special relevance may be given to the positive results achieved with stroke patients, improving the results presented by similar previous EEG-based studies by other research groups. It has also been proposed for the first time an upper-limb intervention protocol for stroke patients using BP and ERD patterns to provide proprioceptive feedback tightly associated with the patients' expectations of movement. The effects of the proposed intervention have been studied with a small group of patients
    corecore