40 research outputs found

    Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization

    Get PDF
    Due to their simplicity and excellent performance, parallel asynchronous variants of stochastic gradient descent have become popular methods to solve a wide range of large-scale optimization problems on multi-core architectures. Yet, despite their practical success, support for nonsmooth objectives is still lacking, making them unsuitable for many problems of interest in machine learning, such as the Lasso, group Lasso or empirical risk minimization with convex constraints. In this work, we propose and analyze ProxASAGA, a fully asynchronous sparse method inspired by SAGA, a variance reduced incremental gradient algorithm. The proposed method is easy to implement and significantly outperforms the state of the art on several nonsmooth, large-scale problems. We prove that our method achieves a theoretical linear speedup with respect to the sequential version under assumptions on the sparsity of gradients and block-separability of the proximal term. Empirical benchmarks on a multi-core architecture illustrate practical speedups of up to 12x on a 20-core machine.Comment: Appears in Advances in Neural Information Processing Systems 30 (NIPS 2017), 28 page

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Distributed Optimization and Control using Operator Splitting Methods

    Get PDF
    The significant progress that has been made in recent years both in hardware implementations and in numerical computing has rendered real-time optimization-based control a viable option when it comes to advanced industrial applications. At the same time, the field of big data has emerged, seeking solutions to problems that classical optimization algorithms are incapable of providing. Though for different reasons, both application areas triggered interest in revisiting the family of optimization algorithms commonly known as decomposition schemes or operator splitting methods. This lately revived interest in these methods can be mainly attributed to two characteristics: Com- putationally low per-iteration cost along with small memory footprint when it comes to embedded applications, and their capacity to deal with problems of vast scales via decomposition when it comes to machine learning-related applications. In this thesis, we design decomposition methods that tackle both small-scale centralized control problems and larger-scale multi-agent distributed control problems. In addition to the classical objective of devising faster methods, we also delve into less usual aspects of operator splitting schemes, which are nonetheless critical for control. In the centralized case, we propose an algorithm that uses decomposition in order to exactly solve a classical optimal control problem that could otherwise be solved only approximately. In the multi-agent framework, we propose two algorithms, one that achieves faster convergence and a second that reduces communication requirements

    Distributed Optimization with Application to Power Systems and Control

    Get PDF
    In many engineering domains, systems are composed of partially independent subsystems—power systems are composed of distribution and transmission systems, teams of robots are composed of individual robots, and chemical process systems are composed of vessels, heat exchangers and reactors. Often, these subsystems should reach a common goal such as satisfying a power demand with minimum cost, flying in a formation, or reaching an optimal set-point. At the same time, limited information exchange is desirable—for confidentiality reasons but also due to communication constraints. Moreover, a fast and reliable decision process is key as applications might be safety-critical. Mathematical optimization techniques are among the most successful tools for controlling systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization control the subsystems in a distributed or decentralized fashion, reducing or avoiding central coordination. These methods have a long and successful history. Classical distributed optimization algorithms, however, are typically designed for convex problems. Hence, they are only partially applicable in the above domains since many of them lead to optimization problems with non-convex constraints. This thesis develops one of the first frameworks for distributed and decentralized optimization with non-convex constraints. Based on the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm, a bi-level distributed ALADIN framework is presented, solving the coordination step of ALADIN in a decentralized fashion. This framework can handle various decentralized inner algorithms, two of which we develop here: a decentralized variant of the Alternating Direction Method of Multipliers (ADMM) and a novel decentralized Conjugate Gradient algorithm. Decentralized conjugate gradient is to the best of our knowledge the first decentralized algorithm with a guarantee of convergence to the exact solution in a finite number of iterates. Sufficient conditions for fast local convergence of bi-level ALADIN are derived. Bi-level ALADIN strongly reduces the communication and coordination effort of ALADIN and preserves its fast convergence guarantees. We illustrate these properties on challenging problems from power systems and control, and compare performance to the widely used ADMM. The developed methods are implemented in the open-source MATLAB toolbox ALADIN-—one of the first toolboxes for decentralized non-convex optimization. ALADIN- comes with a rich set of application examples from different domains showing its broad applicability. As an additional contribution, this thesis provides new insights why state-of-the-art distributed algorithms might encounter issues for constrained problems

    Distributed Optimization with Application to Power Systems and Control

    Get PDF
    Mathematical optimization techniques are among the most successful tools for controlling technical systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization overcome this limitation. Classical approaches, however, are often not applicable due to non-convexities. This work develops one of the first frameworks for distributed non-convex optimization

    Distributed Optimization with Application to Power Systems and Control

    Get PDF
    Mathematical optimization techniques are among the most successful tools for controlling technical systems optimally with feasibility guarantees. Yet, they are often centralized—all data has to be collected in one central and computationally powerful entity. Methods from distributed optimization overcome this limitation. Classical approaches, however, are often not applicable due to non-convexities. This work develops one of the first frameworks for distributed non-convex optimization
    corecore