523 research outputs found

    Filtering for discrete-time nonhomogeneous Markov jump systems with uncertainties

    Get PDF
    This paper studies the problem of robust H1 filtering for a class of uncertain discrete-time nonhomogeneous Markov jump systems. The time-varying jump transition probability matrix is described by a polytope. By Lyapunov function approach, mode-dependent and variation-dependent H1 filter is designed such that the resulting error dynamic system is stochastically stable and has a prescribed H1 performance index. A numerical example is given to illustrate the effectiveness of the developed techniques

    A novel approach to fault detection for fuzzy stochastic systems with nonhomogeneous processes

    Get PDF
    In this paper, we consider a class of fuzzy stochastic systems with nonhomogeneous jump processes. Our focus is on the design of a fuzzy fault detection filter that is sensitive to faults but robust against unknown inputs. Furthermore, the error filtering system is stochastically stable. With reference to an H1 performance index and a new performance index, sufficient conditions to ensure the existence of a fuzzy robust fault detection filter are derived. Simulation studies are carried out, showing that the proposed fuzzy robust FD filter can rapidly detect the faults correctly

    Finite-time synchronization of Markovian neural networks with proportional delays and discontinuous activations

    Get PDF
    In this paper, finite-time synchronization of neural networks (NNs) with discontinuous activation functions (DAFs), Markovian switching, and proportional delays is studied in the framework of Filippov solution. Since proportional delay is unbounded and different from infinite-time distributed delay and classical finite-time analytical techniques are not applicable anymore, new 1-norm analytical techniques are developed. Controllers with and without the sign function are designed to overcome the effects of the uncertainties induced by Filippov solutions and further synchronize the considered NNs in a finite time. By designing new Lyapunov functionals and using M-matrix method, sufficient conditions are derived to guarantee that the considered NNs realize synchronization in a settling time without introducing any free parameters. It is shown that, though the proportional delay can be unbounded, complete synchronization can still be realized, and the settling time can be explicitly estimated. Moreover, it is discovered that controllers with sign function can reduce the control gains, while controllers without the sign function can overcome chattering phenomenon. Finally, numerical simulations are given to show the effectiveness of theoretical results

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy

    Finite-Time Boundedness for a Class of Delayed Markovian Jumping Neural Networks with Partly Unknown Transition Probabilities

    Get PDF
    This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results

    Analysis of Large-Scale Asynchronous Switched Dynamical Systems

    Get PDF
    This dissertation addresses research problems related to the switched system as well as its application to large-scale asynchronous dynamical systems. For decades, this switched system has been widely studied in depth, owing to the broad applicability of the switched system framework. For example, the switched system can be adopted for modeling the dynamics of numerous systems including power systems, manufacturing systems, aerospace systems, networked control systems, etc. Despite considerable research works that have been developed during last several decades, there are still remaining yet important and unsolved problems for the switched systems. In the first part of this dissertation, new methods are developed for uncertainty propagation of stochastic switched systems in the presence of the state uncertainty, represented by probability density functions(PDFs). The main difficulty of this problem is that the number of PDF components in the state increases exponentially under the stochastic switching, incurring the curse of dimensionality. This dissertation provides a novel method that circumvents the issue regarding the curse of dimensionality. As an extension of this research, the new method for the switching synthesis is presented in the second part, to achieve the optimal performance of the switched system. This research is relevant to developing the switching synthesis on how to switch between different switching modes. In the following chapters, some interesting applications that emerges as today's leading-edge technology in high-performance computing (HPC) will be introduced. Generally, the massive parallel computing entails idle process time in multi-core processors or distributed computing devices as up to 80% of total computation time, owing to the synchronization of the data. Thus, there is a trend toward relaxing such a restriction on synchronization penalty to overcome this bottleneck problem. This dissertation presents a synchronous computing algorithms as a key solution to Leverage the computing performance to the maximum capabilities. The price to Pay for adopting the asynchronous computing algorithms is, however, unpredictability of the solution due to the randomness in the behavior of asynchrony. In this dissertation, the switched system is employed to model the characteristics of the asynchrony in parallel computing, enabling analysis of the asynchronous algorithm. Particularly, the analysis will be performed for massively parallel asynchronous numerical algorithms implemented on 1D heat equation and large-scale asynchronous distributed quadratic programming problems. As another case study, this switched system is also implemented on the stability analysis of large-scaled is tribute networked control systems (DNCS) having random communication delays. For these problems, the convergence or stability analysis is carried out by the switched system framework. One of major concerns when adopting the switched system framework for analysis of these systems is the scalability issues associated with extremely large switching mode numbers. Due to the massive parallelism or large-scale distributed nodes, the switching mode numbers are beyond counting, leading to the computational intractability. The proposed methods are developed targeting the settlement of this scalability issue, which inevitably takes place in adopting the switched system framework. Thus, the primary emphasis of this dissertation is placed on the mathematical development of computationally efficient tools, particularly for analysis of the large-scale asynchronous switched dynamical system, which has broad applications including massively parallel asynchronous numerical algorithms to solve ODE/PDE problems, distributed optimization problems, and large-scale DNCS with random communication delays
    • …
    corecore