538 research outputs found

    From Lock Freedom to Progress Using Session Types

    Get PDF
    Inspired by Kobayashi's type system for lock freedom, we define a behavioral type system for ensuring progress in a language of binary sessions. The key idea is to annotate actions in session types with priorities representing the urgency with which such actions must be performed and to verify that processes perform such actions with the required priority. Compared to related systems for session-based languages, the presented type system is relatively simpler and establishes progress for a wider range of processes.Comment: In Proceedings PLACES 2013, arXiv:1312.221

    QDQD-Learning: A Collaborative Distributed Strategy for Multi-Agent Reinforcement Learning Through Consensus + Innovations

    Full text link
    The paper considers a class of multi-agent Markov decision processes (MDPs), in which the network agents respond differently (as manifested by the instantaneous one-stage random costs) to a global controlled state and the control actions of a remote controller. The paper investigates a distributed reinforcement learning setup with no prior information on the global state transition and local agent cost statistics. Specifically, with the agents' objective consisting of minimizing a network-averaged infinite horizon discounted cost, the paper proposes a distributed version of QQ-learning, QD\mathcal{QD}-learning, in which the network agents collaborate by means of local processing and mutual information exchange over a sparse (possibly stochastic) communication network to achieve the network goal. Under the assumption that each agent is only aware of its local online cost data and the inter-agent communication network is \emph{weakly} connected, the proposed distributed scheme is almost surely (a.s.) shown to yield asymptotically the desired value function and the optimal stationary control policy at each network agent. The analytical techniques developed in the paper to address the mixed time-scale stochastic dynamics of the \emph{consensus + innovations} form, which arise as a result of the proposed interactive distributed scheme, are of independent interest.Comment: Submitted to the IEEE Transactions on Signal Processing, 33 page

    Exact Results for Diffusion-Limited Reactions with Synchronous Dynamics

    Full text link
    A new method is introduced allowing to solve exactly the reactions A+A->inert and A+A->A on the 1D lattice with synchronous diffusional dynamics (simultaneous hopping of all particles). Exact connections are found relating densities and certain correlation properties of these two reactions at all times. Asymptotic behavior at large times as well as scaling form describing the regime of low initial density, are derived explicitly.Comment: 12 pages in plain Te

    A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics

    Get PDF
    The analysis of the intraday dynamics of correlations among high-frequency returns is challenging due to the presence of asynchronous trading and market microstructure noise. Both effects may lead to significant data reduction and may severely underestimate correlations if traditional methods for low-frequency data are employed. We propose to model intraday log-prices through a multivariate local-level model with score-driven covariance matrices and to treat asynchronicity as a missing value problem. The main advantages of this approach are: (i) all available data are used when filtering correlations, (ii) market microstructure noise is taken into account, (iii) estimation is performed through standard maximum likelihood methods. Our empirical analysis, performed on 1-second NYSE data, shows that opening hours are dominated by idiosyncratic risk and that a market factor progressively emerges in the second part of the day. The method can be used as a nowcasting tool for high-frequency data, allowing to study the real-time response of covariances to macro-news announcements and to build intraday portfolios with very short optimization horizons.Comment: 30 pages, 10 figures, 7 table

    Multiuser detection in a dynamic environment Part I: User identification and data detection

    Full text link
    In random-access communication systems, the number of active users varies with time, and has considerable bearing on receiver's performance. Thus, techniques aimed at identifying not only the information transmitted, but also that number, play a central role in those systems. An example of application of these techniques can be found in multiuser detection (MUD). In typical MUD analyses, receivers are based on the assumption that the number of active users is constant and known at the receiver, and coincides with the maximum number of users entitled to access the system. This assumption is often overly pessimistic, since many users might be inactive at any given time, and detection under the assumption of a number of users larger than the real one may impair performance. The main goal of this paper is to introduce a general approach to the problem of identifying active users and estimating their parameters and data in a random-access system where users are continuously entering and leaving the system. The tool whose use we advocate is Random-Set Theory: applying this, we derive optimum receivers in an environment where the set of transmitters comprises an unknown number of elements. In addition, we can derive Bayesian-filter equations which describe the evolution with time of the a posteriori probability density of the unknown user parameters, and use this density to derive optimum detectors. In this paper we restrict ourselves to interferer identification and data detection, while in a companion paper we shall examine the more complex problem of estimating users' parameters.Comment: To be published on IEEE Transactions on Information Theor
    corecore