2,762 research outputs found

    Asynchronous Byzantine agreement protocols

    Get PDF
    AbstractA consensus protocol enables a system of n asynchronous processes, some of them faulty, to reach agreement. Both the processes and the message system are capable of cooperating to prevent the correct processes from reaching decision. A protocol is t-resilient if in the presence of up to t faulty processes it reaches agreement with probability 1. Byzantine processes are faulty processes that can deviate arbitrarily from the protocol; Fail-Stop processes can just stop participating in it. In a recent paper, t-resilient randomized consensus protocols were presented for t<n5. We improve this to t < n3, thus matching the known lower bound on the number of correct processes necessary for consensus. The protocol uses a general technique in which the behavior of the Byzantine processes is restricted by the use of a broadcast protocol that filters some of the messages. The apparent behavior of the Byzantine processes, filtered by the broadcast protocol, is similar to that of Fail-Stop processes. Plugging the broadcast protocol as a communicating primitive into an agreement protocol for Fail-Stop processes gives the result. This technique, of using broadcast protocols to reduce the power of the faulty processes and then using them as communication primitives in algorithms designed for weaker failure models, was used succesfully in other contexts

    Brief Announcement: Practical Synchronous Byzantine Consensus

    Get PDF
    This paper presents new protocols for Byzantine state machine replication and Byzantine agreement in the synchronous and authenticated setting. The PBFT state machine replication protocol tolerates f Byzantine faults in an asynchronous setting using n = 3f + 1 replicas. We improve the Byzantine fault tolerance to n = 2f + 1 by utilizing the synchrony assumption. Our protocol also solves synchronous authenticated Byzantine agreement in fewer expected rounds than the best existing solution (Katz and Koo, 2006)

    The Contest Between Simplicity and Efficiency in Asynchronous Byzantine Agreement

    Full text link
    In the wake of the decisive impossibility result of Fischer, Lynch, and Paterson for deterministic consensus protocols in the aynchronous model with just one failure, Ben-Or and Bracha demonstrated that the problem could be solved with randomness, even for Byzantine failures. Both protocols are natural and intuitive to verify, and Bracha's achieves optimal resilience. However, the expected running time of these protocols is exponential in general. Recently, Kapron, Kempe, King, Saia, and Sanwalani presented the first efficient Byzantine agreement algorithm in the asynchronous, full information model, running in polylogarithmic time. Their algorithm is Monte Carlo and drastically departs from the simple structure of Ben-Or and Bracha's Las Vegas algorithms. In this paper, we begin an investigation of the question: to what extent is this departure necessary? Might there be a much simpler and intuitive Las Vegas protocol that runs in expected polynomial time? We will show that the exponential running time of Ben-Or and Bracha's algorithms is no mere accident of their specific details, but rather an unavoidable consequence of their general symmetry and round structure. We define a natural class of "fully symmetric round protocols" for solving Byzantine agreement in an asynchronous setting and show that any such protocol can be forced to run in expected exponential time by an adversary in the full information model. We assume the adversary controls tt Byzantine processors for t=cnt = cn, where cc is an arbitrary positive constant <1/3< 1/3. We view our result as a step toward identifying the level of complexity required for a polynomial-time algorithm in this setting, and also as a guide in the search for new efficient algorithms.Comment: 21 page

    Improved Extension Protocols for Byzantine Broadcast and Agreement

    Get PDF
    Byzantine broadcast (BB) and Byzantine agreement (BA) are two most fundamental problems and essential building blocks in distributed computing, and improving their efficiency is of interest to both theoreticians and practitioners. In this paper, we study extension protocols of BB and BA, i.e., protocols that solve BB/BA with long inputs of l bits using lower costs than l single-bit instances. We present new protocols with improved communication complexity in almost all settings: authenticated BA/BB with t < n/2, authenticated BB with t < (1-?)n, unauthenticated BA/BB with t < n/3, and asynchronous reliable broadcast and BA with t < n/3. The new protocols are advantageous and significant in several aspects. First, they achieve the best-possible communication complexity of ?(nl) for wider ranges of input sizes compared to prior results. Second, the authenticated extension protocols achieve optimal communication complexity given the current best available BB/BA protocols for short messages. Third, to the best of our knowledge, our asynchronous and authenticated protocols in the setting are the first extension protocols in that setting
    • …
    corecore