1,945 research outputs found

    Neural Network Memory Architectures for Autonomous Robot Navigation

    Full text link
    This paper highlights the significance of including memory structures in neural networks when the latter are used to learn perception-action loops for autonomous robot navigation. Traditional navigation approaches rely on global maps of the environment to overcome cul-de-sacs and plan feasible motions. Yet, maintaining an accurate global map may be challenging in real-world settings. A possible way to mitigate this limitation is to use learning techniques that forgo hand-engineered map representations and infer appropriate control responses directly from sensed information. An important but unexplored aspect of such approaches is the effect of memory on their performance. This work is a first thorough study of memory structures for deep-neural-network-based robot navigation, and offers novel tools to train such networks from supervision and quantify their ability to generalize to unseen scenarios. We analyze the separation and generalization abilities of feedforward, long short-term memory, and differentiable neural computer networks. We introduce a new method to evaluate the generalization ability by estimating the VC-dimension of networks with a final linear readout layer. We validate that the VC estimates are good predictors of actual test performance. The reported method can be applied to deep learning problems beyond robotics

    Asynchronous spiking neurons, the natural key to exploit temporal sparsity

    Get PDF
    Inference of Deep Neural Networks for stream signal (Video/Audio) processing in edge devices is still challenging. Unlike the most state of the art inference engines which are efficient for static signals, our brain is optimized for real-time dynamic signal processing. We believe one important feature of the brain (asynchronous state-full processing) is the key to its excellence in this domain. In this work, we show how asynchronous processing with state-full neurons allows exploitation of the existing sparsity in natural signals. This paper explains three different types of sparsity and proposes an inference algorithm which exploits all types of sparsities in the execution of already trained networks. Our experiments in three different applications (Handwritten digit recognition, Autonomous Steering and Hand-Gesture recognition) show that this model of inference reduces the number of required operations for sparse input data by a factor of one to two orders of magnitudes. Additionally, due to fully asynchronous processing this type of inference can be run on fully distributed and scalable neuromorphic hardware platforms

    The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism

    Full text link
    We present scalable hybrid-parallel algorithms for training large-scale 3D convolutional neural networks. Deep learning-based emerging scientific workflows often require model training with large, high-dimensional samples, which can make training much more costly and even infeasible due to excessive memory usage. We solve these challenges by extensively applying hybrid parallelism throughout the end-to-end training pipeline, including both computations and I/O. Our hybrid-parallel algorithm extends the standard data parallelism with spatial parallelism, which partitions a single sample in the spatial domain, realizing strong scaling beyond the mini-batch dimension with a larger aggregated memory capacity. We evaluate our proposed training algorithms with two challenging 3D CNNs, CosmoFlow and 3D U-Net. Our comprehensive performance studies show that good weak and strong scaling can be achieved for both networks using up 2K GPUs. More importantly, we enable training of CosmoFlow with much larger samples than previously possible, realizing an order-of-magnitude improvement in prediction accuracy.Comment: 12 pages, 10 figure
    corecore