286 research outputs found

    Energy Efficient Data Acquistion in Wireless Sensor Network

    Get PDF

    Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning

    Full text link
    Robots that navigate among pedestrians use collision avoidance algorithms to enable safe and efficient operation. Recent works present deep reinforcement learning as a framework to model the complex interactions and cooperation. However, they are implemented using key assumptions about other agents' behavior that deviate from reality as the number of agents in the environment increases. This work extends our previous approach to develop an algorithm that learns collision avoidance among a variety of types of dynamic agents without assuming they follow any particular behavior rules. This work also introduces a strategy using LSTM that enables the algorithm to use observations of an arbitrary number of other agents, instead of previous methods that have a fixed observation size. The proposed algorithm outperforms our previous approach in simulation as the number of agents increases, and the algorithm is demonstrated on a fully autonomous robotic vehicle traveling at human walking speed, without the use of a 3D Lidar

    Networked signal and information processing

    Get PDF
    The article reviews significant advances in networked signal and information processing, which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments of distributed agents. As these interacting agents cooperate, new collective behaviors emerge from local decisions and actions. Moreover, and significantly, theory and applications show that networked agents, through cooperation and sharing, are able to match the performance of cloud or federated solutions, while offering the potential for improved privacy, increasing resilience, and saving resources

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Final Report: Efficient Databases for MPC Microdata

    Full text link

    A neural-visualization IDS for honeynet data

    Get PDF
    Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and comparison of the proposed projection methods are performed in a real domain, where two different case studies are defined and analyzedRegional Government of Gipuzkoa, the Department of Research, Education and Universities of the Basque Government, and the Spanish Ministry of Science and Innovation (MICINN) under projects TIN2010-21272-C02-01 and CIT-020000-2009-12 (funded by the European Regional Development Fund). This work was also supported in the framework of the IT4Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 supported by the Operational Program 'Research and Development for Innovations' funded through the Structural Funds of the European Union and the state budget of the Czech RepublicElectronic version of an article published as International Journal of Neural Systems, Volume 22, Issue 02, April 2012 10.1142/S0129065712500050 ©copyright World Scientific Publishing Company http://www.worldscientific.com/worldscinet/ijn
    corecore