263 research outputs found

    A Bernstein-Von Mises Theorem for discrete probability distributions

    Full text link
    We investigate the asymptotic normality of the posterior distribution in the discrete setting, when model dimension increases with sample size. We consider a probability mass function θ0\theta_0 on \mathbbm{N}\setminus \{0\} and a sequence of truncation levels (kn)n(k_n)_n satisfying kn3ninfiknθ0(i).k_n^3\leq n\inf_{i\leq k_n}\theta_0(i). Let θ^\hat{\theta} denote the maximum likelihood estimate of (θ0(i))ikn(\theta_0(i))_{i\leq k_n} and let Δn(θ0)\Delta_n(\theta_0) denote the knk_n-dimensional vector which ii-th coordinate is defined by \sqrt{n} (\hat{\theta}_n(i)-\theta_0(i)) for 1ikn.1\leq i\leq k_n. We check that under mild conditions on θ0\theta_0 and on the sequence of prior probabilities on the knk_n-dimensional simplices, after centering and rescaling, the variation distance between the posterior distribution recentered around θ^n\hat{\theta}_n and rescaled by n\sqrt{n} and the knk_n-dimensional Gaussian distribution N(Δn(θ0),I1(θ0))\mathcal{N}(\Delta_n(\theta_0),I^{-1}(\theta_0)) converges in probability to 0.0. This theorem can be used to prove the asymptotic normality of Bayesian estimators of Shannon and R\'{e}nyi entropies. The proofs are based on concentration inequalities for centered and non-centered Chi-square (Pearson) statistics. The latter allow to establish posterior concentration rates with respect to Fisher distance rather than with respect to the Hellinger distance as it is commonplace in non-parametric Bayesian statistics.Comment: Published in at http://dx.doi.org/10.1214/08-EJS262 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sparse adaptive Dirichlet-multinomial-like processes

    No full text
    Online estimation and modelling of i.i.d. data for short sequences over large or complex ''alphabets'' is a ubiquitous (sub)problem in machine learning, information theory, data compression, statistical language processing, and document analysis. The Dirichlet-Multinomial distribution (also called Polya urn scheme) and extensions thereof are widely applied for online i.i.d. estimation. Good a-priori choices for the parameters in this regime are difficult to obtain though. I derive an optimal adaptive choice for the main parameter via tight, data-dependent redundancy bounds for a related model. The 1-line recommendation is to set the 'total mass' = 'precision' = 'concentration' parameter to m/2ln[(n+1)/m], where n is the (past) sample size and m the number of different symbols observed (so far). The resulting estimator is simple, online, fast, and experimental performance is superb

    Analysis of pivot sampling in dual-pivot Quicksort: A holistic analysis of Yaroslavskiy's partitioning scheme

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00453-015-0041-7The new dual-pivot Quicksort by Vladimir Yaroslavskiy-used in Oracle's Java runtime library since version 7-features intriguing asymmetries. They make a basic variant of this algorithm use less comparisons than classic single-pivot Quicksort. In this paper, we extend the analysis to the case where the two pivots are chosen as fixed order statistics of a random sample. Surprisingly, dual-pivot Quicksort then needs more comparisons than a corresponding version of classic Quicksort, so it is clear that counting comparisons is not sufficient to explain the running time advantages observed for Yaroslavskiy's algorithm in practice. Consequently, we take a more holistic approach and give also the precise leading term of the average number of swaps, the number of executed Java Bytecode instructions and the number of scanned elements, a new simple cost measure that approximates I/O costs in the memory hierarchy. We determine optimal order statistics for each of the cost measures. It turns out that the asymmetries in Yaroslavskiy's algorithm render pivots with a systematic skew more efficient than the symmetric choice. Moreover, we finally have a convincing explanation for the success of Yaroslavskiy's algorithm in practice: compared with corresponding versions of classic single-pivot Quicksort, dual-pivot Quicksort needs significantly less I/Os, both with and without pivot sampling.Peer ReviewedPostprint (author's final draft
    corecore