400 research outputs found

    Rare-event analysis of mixed Poisson random variables, and applications in staffing

    Get PDF
    A common assumption when modeling queuing systems is that arrivals behave like a Poisson process with constant parameter. In practice, however, call arrivals are often observed to be significantly overdispersed. This motivates that in this paper we consider a mixed Poisson arrival process with arrival rates that are resampled every NaN^{a} time units, where a>0a> 0 and NN a scaling parameter. In the first part of the paper we analyse the asymptotic tail distribution of this doubly stochastic arrival process. That is, for large NN and i.i.d. arrival rates X1,,XNX_1, \dots, X_N, we focus on the evaluation of PN(A)P_N(A), the probability that the scaled number of arrivals exceeds NANA. Relying on elementary techniques, we derive the exact asymptotics of PN(A)P_N(A): For a3a 3 we identify (in closed-form) a function P~N(A)\tilde{P}_N(A) such that PN(A)/PN(A)P_N(A) / P_N(A) tends to 11 as NN \to \infty. For a[13,12)a \in [\frac{1}{3},\frac{1}{2}) and a[2,3)a\in [2, 3) we find a partial solution in terms of an asymptotic lower bound. For the special case that the XiX_is are gamma distributed, we establish the exact asymptotics across all a>0a> 0. In addition, we set up an asymptotically efficient importance sampling procedure that produces reliable estimates at low computational cost. The second part of the paper considers an infinite-server queue assumed to be fed by such a mixed Poisson arrival process. Applying a scaling similar to the one in the definition of PN(A)P_N(A), we focus on the asymptotics of the probability that the number of clients in the system exceeds NANA. The resulting approximations can be useful in the context of staffing. Our numerical experiments show that, astoundingly, the required staffing level can actually decrease when service times are more variable

    Combined analysis of transient delay characteristics and delay autocorrelation function in the Geo(X)/G/1 queue

    Get PDF
    We perform a discrete-time analysis of customer delay in a buffer with batch arrivals. The delay of the kth customer that enters the FIFO buffer is characterized under the assumption that the numbers of arrivals per slot are independent and identically distributed. By using supplementary variables and generating functions, z-transforms of the transient delays are calculated. Numerical inversion of these transforms lead to results for the moments of the delay of the kth customer. For computational reasons k cannot be too large. Therefore, these numerical inversion results are complemented by explicit analytic expressions for the asymptotics for large k. We further show how the results allow us to characterize jitter-related variables, such as the autocorrelation of the delay in steady state

    Universality for mathematical and physical systems

    Full text link
    All physical systems in equilibrium obey the laws of thermodynamics. In other words, whatever the precise nature of the interaction between the atoms and molecules at the microscopic level, at the macroscopic level, physical systems exhibit universal behavior in the sense that they are all governed by the same laws and formulae of thermodynamics. In this paper we describe some recent history of universality ideas in physics starting with Wigner's model for the scattering of neutrons off large nuclei and show how these ideas have led mathematicians to investigate universal behavior for a variety of mathematical systems. This is true not only for systems which have a physical origin, but also for systems which arise in a purely mathematical context such as the Riemann hypothesis, and a version of the card game solitaire called patience sorting.Comment: New version contains some additional explication of the problems considered in the text and additional reference

    Large Deviations and Transient Multiplexing at a Buffered Resource

    Get PDF
    In this paper we discuss asymptotics associated with a large number of sources using a resource in a compact time interval. A large deviations condition is placed on the sum of the vectors that describe the stochastic behaviour of the sources and large deviations results deduced about the probability of exhaustion of the resource. This approach allows us to consider sources which are highly non-stationary in time. The examples in mind are a single server queue and a form of the Cramer-Lundburg model from risk theory. Connection is made with past work on stability of queues and effective bandwidths. A number of examples are presented to illustrate the strengths of this approach
    corecore