135 research outputs found

    Online Matching with Stochastic Rewards: Optimal Competitive Ratio via Path Based Formulation

    Full text link
    The problem of online matching with stochastic rewards is a generalization of the online bipartite matching problem where each edge has a probability of success. When a match is made it succeeds with the probability of the corresponding edge. Introducing this model, Mehta and Panigrahi (FOCS 2012) focused on the special case of identical edge probabilities. Comparing against a deterministic offline LP, they showed that the Ranking algorithm of Karp et al. (STOC 1990) is 0.534 competitive and proposed a new online algorithm with an improved guarantee of 0.5670.567 for vanishingly small probabilities. For the case of vanishingly small but heterogeneous probabilities Mehta et al. (SODA 2015), gave a 0.534 competitive algorithm against the same LP benchmark. For the more general vertex-weighted version of the problem, to the best of our knowledge, no results being 1/21/2 were previously known even for identical probabilities. We focus on the vertex-weighted version and give two improvements. First, we show that a natural generalization of the Perturbed-Greedy algorithm of Aggarwal et al. (SODA 2011), is (1−1/e)(1-1/e) competitive when probabilities decompose as a product of two factors, one corresponding to each vertex of the edge. This is the best achievable guarantee as it includes the case of identical probabilities and in particular, the classical online bipartite matching problem. Second, we give a deterministic 0.5960.596 competitive algorithm for the previously well studied case of fully heterogeneous but vanishingly small edge probabilities. A key contribution of our approach is the use of novel path-based analysis. This allows us to compare against the natural benchmarks of adaptive offline algorithms that know the sequence of arrivals and the edge probabilities in advance, but not the outcomes of potential matches.Comment: Preliminary version in EC 202

    Matroid Online Bipartite Matching and Vertex Cover

    Full text link
    The Adwords and Online Bipartite Matching problems have enjoyed a renewed attention over the past decade due to their connection to Internet advertising. Our community has contributed, among other things, new models (notably stochastic) and extensions to the classical formulations to address the issues that arise from practical needs. In this paper, we propose a new generalization based on matroids and show that many of the previous results extend to this more general setting. Because of the rich structures and expressive power of matroids, our new setting is potentially of interest both in theory and in practice. In the classical version of the problem, the offline side of a bipartite graph is known initially while vertices from the online side arrive one at a time along with their incident edges. The objective is to maintain a decent approximate matching from which no edge can be removed. Our generalization, called Matroid Online Bipartite Matching, additionally requires that the set of matched offline vertices be independent in a given matroid. In particular, the case of partition matroids corresponds to the natural scenario where each advertiser manages multiple ads with a fixed total budget. Our algorithms attain the same performance as the classical version of the problems considered, which are often provably the best possible. We present 1−1/e1-1/e-competitive algorithms for Matroid Online Bipartite Matching under the small bid assumption, as well as a 1−1/e1-1/e-competitive algorithm for Matroid Online Bipartite Matching in the random arrival model. A key technical ingredient of our results is a carefully designed primal-dual waterfilling procedure that accommodates for matroid constraints. This is inspired by the extension of our recent charging scheme for Online Bipartite Vertex Cover.Comment: 19 pages, to appear in EC'1

    New Algorithms, Better Bounds, and a Novel Model for Online Stochastic Matching

    Get PDF
    Online matching has received significant attention over the last 15 years due to its close connection to Internet advertising. As the seminal work of Karp, Vazirani, and Vazirani has an optimal (1 - 1/epsilon) competitive ratio in the standard adversarial online model, much effort has gone into developing useful online models that incorporate some stochasticity in the arrival process. One such popular model is the "known I.I.D. model" where different customer-types arrive online from a known distribution. We develop algorithms with improved competitive ratios for some basic variants of this model with integral arrival rates, including: (a) the case of general weighted edges, where we improve the best-known ratio of 0.667 due to [Haeupler, Mirrokni and Zadimoghaddam WINE 2011] to 0.705; and (b) the vertex-weighted case, where we improve the 0.7250 ratio of [Jaillet and Lu Math. Oper. Res 2013] to 0.7299. We also consider two extensions, one is "known I.I.D." with non-integral arrival rate and stochastic rewards; the other is "known I.I.D." b-matching with non-integral arrival rate and stochastic rewards. We present a simple non-adaptive algorithm which works well simultaneously on the two extensions. One of the key ingredients of our improvement is the following (offline) approach to bipartite-matching polytopes with additional constraints. We first add several valid constraints in order to get a good fractional solution f; however, these give us less control over the structure of f. We next remove all these additional constraints and randomly move from f to a feasible point on the matching polytope with all coordinates being from the set {0, 1/k, 2/k,..., 1} for a chosen integer k. The structure of this solution is inspired by [Jaillet and Lu Math. Oper. Res 2013] and is a tractable structure for algorithm design and analysis. The appropriate random move preserves many of the removed constraints (approximately [exactly] with high probability [in expectation]). This underlies some of our improvements, and, we hope, could be of independent interest
    • …
    corecore