464 research outputs found

    A Generic Approach to Searching for Jacobians

    Full text link
    We consider the problem of finding cryptographically suitable Jacobians. By applying a probabilistic generic algorithm to compute the zeta functions of low genus curves drawn from an arbitrary family, we can search for Jacobians containing a large subgroup of prime order. For a suitable distribution of curves, the complexity is subexponential in genus 2, and O(N^{1/12}) in genus 3. We give examples of genus 2 and genus 3 hyperelliptic curves over prime fields with group orders over 180 bits in size, improving previous results. Our approach is particularly effective over low-degree extension fields, where in genus 2 we find Jacobians over F_{p^2) and trace zero varieties over F_{p^3} with near-prime orders up to 372 bits in size. For p = 2^{61}-1, the average time to find a group with 244-bit near-prime order is under an hour on a PC.Comment: 22 pages, to appear in Mathematics of Computatio

    Discrete logarithms in curves over finite fields

    Get PDF
    A survey on algorithms for computing discrete logarithms in Jacobians of curves over finite fields

    Group law computations on Jacobians of hyperelliptic curves

    Get PDF
    We derive an explicit method of computing the composition step in Cantor’s algorithm for group operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor’s general composition involves arithmetic in the polynomial ring F_q[x], the algorithm we propose solves a linear system over the base field which can be written down directly from the Mumford coordinates of the group elements. We apply this method to give more efficient formulas for group operations in both affine and projective coordinates for cryptographic systems based on Jacobians of genus 2 hyperelliptic curves in general form

    Computing functions on Jacobians and their quotients

    Get PDF
    We show how to efficiently compute functions on jacobian varieties and their quotients. We deduce a quasi-optimal algorithm to compute (l,l)(l,l) isogenies between jacobians of genus two curves

    Constructing Permutation Rational Functions From Isogenies

    Full text link
    A permutation rational function f∈Fq(x)f\in \mathbb{F}_q(x) is a rational function that induces a bijection on Fq\mathbb{F}_q, that is, for all y∈Fqy\in\mathbb{F}_q there exists exactly one x∈Fqx\in\mathbb{F}_q such that f(x)=yf(x)=y. Permutation rational functions are intimately related to exceptional rational functions, and more generally exceptional covers of the projective line, of which they form the first important example. In this paper, we show how to efficiently generate many permutation rational functions over large finite fields using isogenies of elliptic curves, and discuss some cryptographic applications. Our algorithm is based on Fried's modular interpretation of certain dihedral exceptional covers of the projective line (Cont. Math., 1994)

    Counting Points on Genus 2 Curves with Real Multiplication

    Get PDF
    We present an accelerated Schoof-type point-counting algorithm for curves of genus 2 equipped with an efficiently computable real multiplication endomorphism. Our new algorithm reduces the complexity of genus 2 point counting over a finite field (\F_{q}) of large characteristic from (\widetilde{O}(\log^8 q)) to (\widetilde{O}(\log^5 q)). Using our algorithm we compute a 256-bit prime-order Jacobian, suitable for cryptographic applications, and also the order of a 1024-bit Jacobian

    Computing in Jacobians of projective curves over finite fields

    Full text link
    We give algorithms for computing with divisors on projective curves over finite fields, and with their Jacobians, using the algorithmic representation of projective curves developed by Khuri-Makdisi. We show that many desirable operations can be done efficiently in this setting: decomposing divisors into prime divisors; computing pull-backs and push-forwards of divisors under finite morphisms, and hence Picard and Albanese maps on Jacobians; generating uniformly random divisors and points on Jacobians; computing Frobenius maps and Kummer maps; and finding a basis for the ll-torsion of the Picard group, where ll is a prime number different from the characteristic of the base field.Comment: 42 page
    • …
    corecore