492 research outputs found

    Generalizing Informed Sampling for Asymptotically Optimal Sampling-based Kinodynamic Planning via Markov Chain Monte Carlo

    Full text link
    Asymptotically-optimal motion planners such as RRT* have been shown to incrementally approximate the shortest path between start and goal states. Once an initial solution is found, their performance can be dramatically improved by restricting subsequent samples to regions of the state space that can potentially improve the current solution. When the motion planning problem lies in a Euclidean space, this region XinfX_{inf}, called the informed set, can be sampled directly. However, when planning with differential constraints in non-Euclidean state spaces, no analytic solutions exists to sampling XinfX_{inf} directly. State-of-the-art approaches to sampling XinfX_{inf} in such domains such as Hierarchical Rejection Sampling (HRS) may still be slow in high-dimensional state space. This may cause the planning algorithm to spend most of its time trying to produces samples in XinfX_{inf} rather than explore it. In this paper, we suggest an alternative approach to produce samples in the informed set XinfX_{inf} for a wide range of settings. Our main insight is to recast this problem as one of sampling uniformly within the sub-level-set of an implicit non-convex function. This recasting enables us to apply Monte Carlo sampling methods, used very effectively in the Machine Learning and Optimization communities, to solve our problem. We show for a wide range of scenarios that using our sampler can accelerate the convergence rate to high-quality solutions in high-dimensional problems

    Probabilistic completeness of RRT for geometric and kinodynamic planning with forward propagation

    Full text link
    The Rapidly-exploring Random Tree (RRT) algorithm has been one of the most prevalent and popular motion-planning techniques for two decades now. Surprisingly, in spite of its centrality, there has been an active debate under which conditions RRT is probabilistically complete. We provide two new proofs of probabilistic completeness (PC) of RRT with a reduced set of assumptions. The first one for the purely geometric setting, where we only require that the solution path has a certain clearance from the obstacles. For the kinodynamic case with forward propagation of random controls and duration, we only consider in addition mild Lipschitz-continuity conditions. These proofs fill a gap in the study of RRT itself. They also lay sound foundations for a variety of more recent and alternative sampling-based methods, whose PC property relies on that of RRT

    Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs

    Full text link
    In this paper, we present Batch Informed Trees (BIT*), a planning algorithm based on unifying graph- and sampling-based planning techniques. By recognizing that a set of samples describes an implicit random geometric graph (RGG), we are able to combine the efficient ordered nature of graph-based techniques, such as A*, with the anytime scalability of sampling-based algorithms, such as Rapidly-exploring Random Trees (RRT). BIT* uses a heuristic to efficiently search a series of increasingly dense implicit RGGs while reusing previous information. It can be viewed as an extension of incremental graph-search techniques, such as Lifelong Planning A* (LPA*), to continuous problem domains as well as a generalization of existing sampling-based optimal planners. It is shown that it is probabilistically complete and asymptotically optimal. We demonstrate the utility of BIT* on simulated random worlds in R2\mathbb{R}^2 and R8\mathbb{R}^8 and manipulation problems on CMU's HERB, a 14-DOF two-armed robot. On these problems, BIT* finds better solutions faster than RRT, RRT*, Informed RRT*, and Fast Marching Trees (FMT*) with faster anytime convergence towards the optimum, especially in high dimensions.Comment: 8 Pages. 6 Figures. Video available at http://www.youtube.com/watch?v=TQIoCC48gp
    • …
    corecore