148 research outputs found

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter

    CFARnet: deep learning for target detection with constant false alarm rate

    Full text link
    We consider the problem of learning detectors with a Constant False Alarm Rate (CFAR). Classical model-based solutions to composite hypothesis testing are sensitive to imperfect models and are often computationally expensive. In contrast, data-driven machine learning is often more robust and yields classifiers with fixed computational complexity. Learned detectors usually do not have a CFAR as required in many applications. To close this gap, we introduce CFARnet where the loss function is penalized to promote similar distributions of the detector under any null hypothesis scenario. Asymptotic analysis in the case of linear models with general Gaussian noise reveals that the classical generalized likelihood ratio test (GLRT) is actually a minimizer of the CFAR constrained Bayes risk. Experiments in both synthetic data and real hyper-spectral images show that CFARnet leads to near CFAR detectors with similar accuracy as their competitors.Comment: arXiv admin note: substantial text overlap with arXiv:2206.0574

    Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise

    Get PDF
    We address the problem of adaptive detection of a signal of interest embedded in colored noise modeled in terms of a compound-Gaussian process. The covariance matrices of the primary and the secondary data share a common structure while having different power levels. A Bayesian approach is proposed here, where both the power levels and the structure are assumed to be random, with some appropriate distributions. Within this framework we propose MMSE and MAP estimators of the covariance structure and their application to adaptive detection using the NMF test statistic and an optimized GLRT herein derived. Some results, also conducted in comparison with existing algorithms, are presented to illustrate the performances of the proposed algorithms. The relevant result is that the solutions presented herein allows to improve the performance over conventional ones, especially in presence of a small number of training data

    Detection of a signal in linear subspace with bounded mismatch

    Get PDF
    We consider the problem of detecting a signal of interest in a background of noise with unknown covariance matrix, taking into account a possible mismatch between the actual steering vector and the presumed one. We assume that the former belongs to a known linear subspace, up to a fraction of its energy. When the subspace of interest consists of the presumed steering vector, this amounts to assuming that the angle between the actual steering vector and the presumed steering vector is upper bounded. Within this framework, we derive the generalized likelihood ratio test (GLRT). We show that it involves solving a minimization problem with the constraint that the signal of interest lies inside a cone. We present a computationally efficient algorithm to find the maximum likelihood estimator (MLE) based on the Lagrange multiplier technique. Numerical simulations illustrate the performance and the robustness of this new detector, and compare it with the adaptive coherence estimator which assumes that the steering vector lies entirely in a subspace

    Knowledge-aided bayesian detection in heterogeneous environments

    Get PDF
    We address the problem of detecting a signal of interest in the presence of noise with unknown covariance matrix, using a set of training samples. We consider a situation where the environment is not homogeneous, i.e., when the covariance matrices of the primary and the secondary data are different. A knowledge-aided Bayesian framework is proposed, where these covariance matrices are considered as random, and some information about the covariance matrix of the training samples is available. Within this framework, the maximum a priori (MAP) estimate of the primary data covariance matrix is derived. It is shown that it amounts to colored loading of the sample covariance matrix of the secondary data. The MAP estimate is in turn used to yield a Bayesian version of the adaptive matched filter. Numerical simulations illustrate the performance of this detector, and compare it with the conventional adaptive matched filter

    Adaptive detection in nonhomogeneous environments using the generalized eigenrelation

    Get PDF
    This letter considers adaptive detection of a signal in a nonhomogeneous environment, more precisely under a covariance mismatch between the test vector and the training samples, due to an interference that is not accounted for by the training samples, e.g., a sidelobe target or an undernulled interference. We assume that the covariance matrices of the test vector and the training samples verify the so-called generalized eigenrelation. Under this assumption, we derive the generalized likelihood ratio test and show that it coincides with Kelly’s detector

    Constant False Alarm Rate Target Detection in Synthetic Aperture Radar Imagery

    Get PDF
    Target detection plays a significant role in many synthetic aperture radar (SAR) applications, ranging from surveillance of military tanks and enemy territories to crop monitoring in agricultural uses. Detection of targets faces two major problems namely, first, how to remotely acquire high resolution images of targets, second, how to efficiently extract information regarding features of clutter-embedded targets. The first problem is addressed by the use of high penetration radar like synthetic aperture radar. The second problem is tackled by efficient algorithms for accurate and fast detection. So far, there are many methods of target detection for SAR imagery available such as CFAR, generalized likelihood ratio test (GLRT) method, multiscale autoregressive method, wavelet transform based method etc. The CFAR method has been extensively used because of its attractive features like simple computation and fast detection of targets. The CFAR algorithm incorporates precise statistical description of background clutter which determines how accurately target detection is achieved. The primary goal of this project is to investigate the statistical distribution of SAR background clutter from homogeneous and heterogeneous ground areas and analyze suitability of statistical distributions mathematically modelled for SAR clutter. The threshold has to be accurately computed based on statistical distribution so as to efficiently distinguish target from SAR clutter. Several distributions such as lognormal, Weibull, K, KK, G0, generalized Gamma (GGD) distributions are considered for clutter amplitude modeling in SAR images. The CFAR detection algorithm based on appropriate background clutter distribution is applied to moving and stationary target acquisition and recognition (MSTAR) images. The experimental results show that, CFAR detector based on GGD outmatches CFAR detectors based on lognormal, Weibull, K, KK, G0 distributions in terms of accuracy and computation time.
    corecore