7,368 research outputs found

    Effects of rotation and sloping terrain on fronts of density current fronts

    Get PDF
    The initial stage of the adjustment of a gravity current to the effects of rotation with angular velocity f/2 is analysed using a short time analysis where Coriolis forces are initiated in an inviscid von Kármán–Benjamin gravity current front at tF=0. It is shown how, on a time-scale of order 1/f, as a result of ageostrophic dynamics, the slope and front speed UF are much reduced from their initial values, while the transverse anticyclonic velocity parallel to the front increases from zero to O(NH0), where N=g′/H0−−−−−√ is the buoyancy frequency, and g′=gΔρ/ρ0 is the reduced acceleration due to gravity. Here ρ0 is the density and Δρ and H0 are the density difference and initial height of the current. Extending the steady-state theory to account for the effect of the slope σ on the bottom boundary shows that, without rotation, UF has a maximum value for σ=\upi/6, while with rotation, UF tends to zero on any slope. For the asymptotic stage when ftF≫1, the theory of unsteady waves on the current is reviewed using nonlinear shallow-water equations and the van der Pol averaging method. Their motions naturally split into a ‘balanced’ component satisfying the Margules geostrophic relation and an equally large ‘unbalanced’ component, in which there is horizontal divergence and ageostrophic vorticity. The latter is responsible for nonlinear oscillations in the current on a time scale f−1, which have been observed in the atmosphere and field experiments. Their magnitude is mainly determined by the initial potential energy in relation to that of the current and is proportional to the ratio \it Bu−−−−−√=LR/R0, where LR=NH0/f is the Rossby deformation radius and R0 is the initial radius. The effect of slope friction also prevents the formation of a steady front. From the analysis it is concluded that a weak mean radial flow must be driven by the ageostrophic oscillations, preventing the mean front speed UF from halting sharply at ftF∼1. Depending on the initial value of LR/R0, physical arguments show that UF decreases slowly in proportion to (ftF)−1/2, i.e. UF/UF0=F(ftF,\it Bu). Thus the front only tends to the geostrophic asymptotic state of zero radial velocity very slowly (i.e. as ftF→∞) for finite values of LR/R0. However, as LR/R0→0, it reaches this state when ftF∼1. This analysis of the overall nonlinear behaviour of the gravity current is consistent with two two-dimensional non-hydrostatic (Navier–Stokes) and axisymmetric hydrostatic (shallow-water) Eulerian numerical simulations of the varying form of the rotating gravity current. When the effect of surface friction is considered, it is found that the mean movement of the front is significantly slowed. Furthermore, the oscillations with angular frequency f and the slow growth of the radius, when ftF≥1, are consistent with recent experiments

    Numerical analysis of reversible A + B <-> C reaction-diffusion systems

    Full text link
    We develop an effective numerical method of studying large-time properties of reversible reaction-diffusion systems of type A + B C with initially separated reactants. Using it we find that there are three types of asymptotic reaction zones. In particular we show that the reaction rate can be locally negative and concentrations of species A and B can be nonmonotonic functions of the space coordinate x, locally significantly exceeding their initial values.Comment: To appear in EPJ B, 5 pages + 6 figure

    Chaotic motion of space charge wavefronts in semiconductors under time-independent voltage bias

    Full text link
    A standard drift-diffusion model of space charge wave propagation in semiconductors has been studied numerically and analytically under dc voltage bias. For sufficiently long samples, appropriate contact resistivity and applied voltage - such that the sample is biased in a regime of negative differential resistance - we find chaos in the propagation of nonlinear fronts (charge monopoles of alternating sign) of electric field. The chaos is always low-dimensional, but has a complex spatial structure; this behavior can be interpreted using a finite dimensional asymptotic model in which the front (charge monopole) positions and the electrical current are the only dynamical variables.Comment: 12 pages, 8 figure

    An adaptive grid refinement strategy for the simulation of negative streamers

    Get PDF
    The evolution of negative streamers during electric breakdown of a non-attaching gas can be described by a two-fluid model for electrons and positive ions. It consists of continuity equations for the charged particles including drift, diffusion and reaction in the local electric field, coupled to the Poisson equation for the electric potential. The model generates field enhancement and steep propagating ionization fronts at the tip of growing ionized filaments. An adaptive grid refinement method for the simulation of these structures is presented. It uses finite volume spatial discretizations and explicit time stepping, which allows the decoupling of the grids for the continuity equations from those for the Poisson equation. Standard refinement methods in which the refinement criterion is based on local error monitors fail due to the pulled character of the streamer front that propagates into a linearly unstable state. We present a refinement method which deals with all these features. Tests on one-dimensional streamer fronts as well as on three-dimensional streamers with cylindrical symmetry (hence effectively 2D for numerical purposes) are carried out successfully. Results on fine grids are presented, they show that such an adaptive grid method is needed to capture the streamer characteristics well. This refinement strategy enables us to adequately compute negative streamers in pure gases in the parameter regime where a physical instability appears: branching streamers.Comment: 46 pages, 19 figures, to appear in J. Comp. Phy

    Propagation and Structure of Planar Streamer Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations. In the present long paper, you find the physics of the model and the interfacial approach further explained. As a first ingredient of this approach, we here analyze planar fronts, their profile and velocity. We encounter a selection problem, recall some knowledge about such problems and apply it to planar streamer fronts. We make analytical predictions on the selected front profile and velocity and confirm them numerically. (abbreviated abstract)Comment: 23 pages, revtex, 14 ps file

    Depinning transitions in discrete reaction-diffusion equations

    Full text link
    We consider spatially discrete bistable reaction-diffusion equations that admit wave front solutions. Depending on the parameters involved, such wave fronts appear to be pinned or to glide at a certain speed. We study the transition of traveling waves to steady solutions near threshold and give conditions for front pinning (propagation failure). The critical parameter values are characterized at the depinning transition and an approximation for the front speed just beyond threshold is given.Comment: 27 pages, 12 figures, to appear in SIAM J. Appl. Mat
    • …
    corecore