193 research outputs found

    An OFDM Signal Identification Method for Wireless Communications Systems

    Full text link
    Distinction of OFDM signals from single carrier signals is highly important for adaptive receiver algorithms and signal identification applications. OFDM signals exhibit Gaussian characteristics in time domain and fourth order cumulants of Gaussian distributed signals vanish in contrary to the cumulants of other signals. Thus fourth order cumulants can be utilized for OFDM signal identification. In this paper, first, formulations of the estimates of the fourth order cumulants for OFDM signals are provided. Then it is shown these estimates are affected significantly from the wireless channel impairments, frequency offset, phase offset and sampling mismatch. To overcome these problems, a general chi-square constant false alarm rate Gaussianity test which employs estimates of cumulants and their covariances is adapted to the specific case of wireless OFDM signals. Estimation of the covariance matrix of the fourth order cumulants are greatly simplified peculiar to the OFDM signals. A measurement setup is developed to analyze the performance of the identification method and for comparison purposes. A parametric measurement analysis is provided depending on modulation order, signal to noise ratio, number of symbols, and degree of freedom of the underlying test. The proposed method outperforms statistical tests which are based on fixed thresholds or empirical values, while a priori information requirement and complexity of the proposed method are lower than the coherent identification techniques

    A unified fluctuation formula for one-cut β\beta-ensembles of random matrices

    Get PDF
    Using a Coulomb gas approach, we compute the generating function of the covariances of power traces for one-cut β\beta-ensembles of random matrices in the limit of large matrix size. This formula depends only on the support of the spectral density, and is therefore universal for a large class of models. This allows us to derive a closed-form expression for the limiting covariances of an arbitrary one-cut β\beta-ensemble. As particular cases of the main result we consider the classical β\beta-Gaussian, β\beta-Wishart and β\beta-Jacobi ensembles, for which we derive previously available results as well as new ones within a unified simple framework. We also discuss the connections between the problem of trace fluctuations for the Gaussian Unitary Ensemble and the enumeration of planar maps.Comment: 16 pages, 4 figures, 3 tables. Revised version where references have been added and typos correcte

    Asymptotic Performance of Linear Receivers in MIMO Fading Channels

    Full text link
    Linear receivers are an attractive low-complexity alternative to optimal processing for multi-antenna MIMO communications. In this paper we characterize the information-theoretic performance of MIMO linear receivers in two different asymptotic regimes. For fixed number of antennas, we investigate the limit of error probability in the high-SNR regime in terms of the Diversity-Multiplexing Tradeoff (DMT). Following this, we characterize the error probability for fixed SNR in the regime of large (but finite) number of antennas. As far as the DMT is concerned, we report a negative result: we show that both linear Zero-Forcing (ZF) and linear Minimum Mean-Square Error (MMSE) receivers achieve the same DMT, which is largely suboptimal even in the case where outer coding and decoding is performed across the antennas. We also provide an approximate quantitative analysis of the markedly different behavior of the MMSE and ZF receivers at finite rate and non-asymptotic SNR, and show that while the ZF receiver achieves poor diversity at any finite rate, the MMSE receiver error curve slope flattens out progressively, as the coding rate increases. When SNR is fixed and the number of antennas becomes large, we show that the mutual information at the output of a MMSE or ZF linear receiver has fluctuations that converge in distribution to a Gaussian random variable, whose mean and variance can be characterized in closed form. This analysis extends to the linear receiver case a well-known result previously obtained for the optimal receiver. Simulations reveal that the asymptotic analysis captures accurately the outage behavior of systems even with a moderate number of antennas.Comment: 48 pages, Submitted to IEEE Transactions on Information Theor

    Probing non-orthogonality of eigenvectors in non-Hermitian matrix models: diagrammatic approach

    Get PDF
    Using large NN arguments, we propose a scheme for calculating the two-point eigenvector correlation function for non-normal random matrices in the large NN limit. The setting generalizes the quaternionic extension of free probability to two-point functions. In the particular case of biunitarily invariant random matrices, we obtain a simple, general expression for the two-point eigenvector correlation function, which can be viewed as a further generalization of the single ring theorem. This construction has some striking similarities to the freeness of the second kind known for the Hermitian ensembles in large NN. On the basis of several solved examples, we conjecture two kinds of microscopic universality of the eigenvectors - one in the bulk, and one at the rim. The form of the conjectured bulk universality agrees with the scaling limit found by Chalker and Mehlig [JT Chalker, B Mehlig, PRL, \textbf{81}, 3367 (1998)] in the case of the complex Ginibre ensemble.Comment: 20 pages + 4 pages of references, 12 figs; v2: typos corrected, refs added; v3: more explanator

    From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics

    Full text link
    This review gives a pedagogical introduction to the eigenstate thermalization hypothesis (ETH), its basis, and its implications to statistical mechanics and thermodynamics. In the first part, ETH is introduced as a natural extension of ideas from quantum chaos and random matrix theory (RMT). To this end, we present a brief overview of classical and quantum chaos, as well as RMT and some of its most important predictions. The latter include the statistics of energy levels, eigenstate components, and matrix elements of observables. Building on these, we introduce the ETH and show that it allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath. We examine numerical evidence of eigenstate thermalization from studies of many-body lattice systems. We also introduce the concept of a quench as a means of taking isolated systems out of equilibrium, and discuss results of numerical experiments on quantum quenches. The second part of the review explores the implications of quantum chaos and ETH to thermodynamics. Basic thermodynamic relations are derived, including the second law of thermodynamics, the fundamental thermodynamic relation, fluctuation theorems, the fluctuation–dissipation relation, and the Einstein and Onsager relations. In particular, it is shown that quantum chaos allows one to prove these relations for individual Hamiltonian eigenstates and thus extend them to arbitrary stationary statistical ensembles. In some cases, it is possible to extend their regimes of applicability beyond the standard thermal equilibrium domain. We then show how one can use these relations to obtain nontrivial universal energy distributions in continuously driven systems. At the end of the review, we briefly discuss the relaxation dynamics and description after relaxation of integrable quantum systems, for which ETH is violated. We present results from numerical experiments and analytical studies of quantum quenches at integrability. We introduce the concept of the generalized Gibbs ensemble and discuss its connection with ideas of prethermalization in weakly interacting systems.This work was supported by the Army Research Office [grant number W911NF1410540] (L.D., A.P, and M.R.), the U.S.-Israel Binational Science Foundation [grant number 2010318] (Y.K. and A.P.), the Israel Science Foundation [grant number 1156/13] (Y.K.), the National Science Foundation [grant numbers DMR-1506340 (A.P.)and PHY-1318303 (M.R.)], the Air Force Office of Scientific Research [grant number FA9550-13-1-0039] (A.P.), and the Office of Naval Research [grant number N000141410540] (M.R.). The computations were performed in the Institute for CyberScience at Penn State. (W911NF1410540 - Army Research Office; 2010318 - U.S.-Israel Binational Science Foundation; 1156/13 - Israel Science Foundation; DMR-1506340 - National Science Foundation; PHY-1318303 - National Science Foundation; FA9550-13-1-0039 - Air Force Office of Scientific Research; N000141410540 - Office of Naval Research)Accepted manuscrip

    Zooming in on local level statistics by supersymmetric extension of free probability

    Full text link
    We consider unitary ensembles of Hermitian NxN matrices H with a confining potential NV where V is analytic and uniformly convex. From work by Zinn-Justin, Collins, and Guionnet and Maida it is known that the large-N limit of the characteristic function for a finite-rank Fourier variable K is determined by the Voiculescu R-transform, a key object in free probability theory. Going beyond these results, we argue that the same holds true when the finite-rank operator K has the form that is required by the Wegner-Efetov supersymmetry method of integration over commuting and anti-commuting variables. This insight leads to a potent new technique for the study of local statistics, e.g., level correlations. We illustrate the new technique by demonstrating universality in a random matrix model of stochastic scattering.Comment: 38 pages, 3 figures, published version, minor changes in Section

    Fluctuation Spectra and Coarse Graining in Stochastic Dynamics

    Full text link
    Fluctuations in small biological systems can be crucial for their function. Large-deviation theory characterizes such rare events from the perspective of stochastic processes. In most cases it is very difficult to directly determine the large-deviation functions. Circumventing this necessity, I present a method to quantify the fluctuation spectra for arbitrary Markovian models with finite state space. Under non-equilibrium conditions, current-like observables are of special interest. The space of all current-like observables has a natural decomposition into orthogonal complements. Remarkably, the fluctuation spectrum of any observable is entirely determined by only one of these components. The method is applied to study differences of fluctuations in setups sampling the same dynamics at different resolutions. Coarse graining relates these models and can be done in a way that preserves expectation values of observables. However, the effects of the coarse graining on the fluctuations are not obvious. These differences are explicitly worked out for a simple model system.Comment: Master's thesis, 79 pages, 21 figure
    corecore