2,083 research outputs found

    Exponential Stability for a Class of Stochastic Reaction-Diffusion Hopfield Neural Networks with Delays

    Get PDF
    This paper studies the asymptotic behavior for a class of delayed reaction-diffusion Hopfield neural networks driven by finite-dimensional Wiener processes. Some new sufficient conditions are established to guarantee the mean square exponential stability of this system by using Poincaré’s inequality and stochastic analysis technique. The proof of the almost surely exponential stability for this system is carried out by using the Burkholder-Davis-Gundy inequality, the Chebyshev inequality and the Borel-Cantelli lemma. Finally, an example is given to illustrate the effectiveness of the proposed approach, and the simulation is also given by using the Matlab

    Design of exponential state estimators for neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this Letter, the state estimation problem is dealt with for a class of recurrent neural networks (RNNs) with mixed discrete and distributed delays. The activation functions are assumed to be neither monotonic, nor differentiable, nor bounded. We aim at designing a state estimator to estimate the neuron states, through available output measurements, such that the dynamics of the estimation error is globally exponentially stable in the presence of mixed time delays. By using the Laypunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of Jiangsu Education Committee of China under Grants 05KJB110154 and BK2006064, and the National Natural Science Foundation of China under Grants 10471119 and 10671172

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Asymptotic stability for neural networks with mixed time-delays: The discrete-time case

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the stability analysis problem for a new class of discrete-time recurrent neural networks with mixed time-delays. The mixed time-delays that consist of both the discrete and distributed time-delays are addressed, for the first time, when analyzing the asymptotic stability for discrete-time neural networks. The activation functions are not required to be differentiable or strictly monotonic. The existence of the equilibrium point is first proved under mild conditions. By constructing a new Lyapnuov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the discrete-time neural networks to be globally asymptotically stable. As an extension, we further consider the stability analysis problem for the same class of neural networks but with state-dependent stochastic disturbances. All the conditions obtained are expressed in terms of LMIs whose feasibility can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, an International Joint Project sponsored by the Royal Society of the UK, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany

    pth moment exponential stability of stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays

    Get PDF
    In this paper, stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are investigated. By using Lyapunov function and the Ito differential formula, some sufficient conditions for the pth moment exponential stability of such stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are established. An example is given to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief conclusion. Methodology and achieved results is to be presented

    Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the problem of stochastic synchronization analysis is investigated for a new array of coupled discrete-time stochastic complex networks with randomly occurred nonlinearities (RONs) and time delays. The discrete-time complex networks under consideration are subject to: (1) stochastic nonlinearities that occur according to the Bernoulli distributed white noise sequences; (2) stochastic disturbances that enter the coupling term, the delayed coupling term as well as the overall network; and (3) time delays that include both the discrete and distributed ones. Note that the newly introduced RONs and the multiple stochastic disturbances can better reflect the dynamical behaviors of coupled complex networks whose information transmission process is affected by a noisy environment (e.g., Internet-based control systems). By constructing a novel Lyapunov-like matrix functional, the idea of delay fractioning is applied to deal with the addressed synchronization analysis problem. By employing a combination of the linear matrix inequality (LMI) techniques, the free-weighting matrix method and stochastic analysis theories, several delay-dependent sufficient conditions are obtained which ensure the asymptotic synchronization in the mean square sense for the discrete-time stochastic complex networks with time delays. The criteria derived are characterized in terms of LMIs whose solution can be solved by utilizing the standard numerical software. A simulation example is presented to show the effectiveness and applicability of the proposed results
    corecore