51 research outputs found

    Development and validation of the thermal diagnostics instrumentation in lisa pathfinder

    Get PDF
    This thesis focuses on the issues related to the thermal diagnostics aboard the space mission LISA Pathfinder (LPF). LPF is a technological mission devoted to put to test critical subsystems for the LISA mission. LISA will be the first space born gravitational wave (GW) observatory with the main objective of detecting GWs. GWs are ripples of the space-time geometry caused by acceleration of masses in an asymmetric way. Their detection requires put test masses (TMs) in an almost perfect inertial frame (or free fall).Non-inertial forces perturbing the TMs must be less than 6 fN/sqrt(Hz) in the frequency range of 0.1 mHz to 0.1 Hz and the noise in the measurement between the TMs (separated by 5 Gm) must be of 40 pm/sqrt(Hz) in the same band. To reduce the risks of a direct launch of LISA, ESA has decided to first launch LPF to put all the LISA technologies to test.The payload of LPF, the LISA Technology Package (LTP), contains two TMs placed in two cylinders inside a single spacecraft (SC) and an interferometric system that measures the relative distance between them. The SC isolates the TMs from the external disturbances but internal stray forces will still perturb the TMs. Their levels must be bounded not to challenge the free fall accuracy. One of these disturbances is temperature fluctuations and the aspects related to their measurement are the leitmotif of this thesis.In chapter 1 we have presented how temperature fluctuations couple into the key subsystems of the LTP to degrade their performance. The foreseen effects are radiation pressure, radiometer effect, temperature coefficient of optical components, etc. Onground estimations conclude that the temperature stability in the LTP must be less than 100 microK/sqrt(Hz) in the frequency range of 1 mHz to 30 mHz (LTP band). Since temperature fluctuations are an important issue in LPF and in LISA, a thermal diagnostic subsystem is needed aboard both missions.The task of the thermal diagnostics in the LTP is twofold: on the one hand, temperature fluctuations in different subsystems must be measured with noise levels of 10 microK/sqrt(Hz) in the LTP band. On the other hand, a set of heaters will generate heat pulses that in conjunction with temperature measurements will be used to estimate the actual coupling between temperature and systems performance. These actions will provide information on the behaviour of the system and will permit to identify the fraction of noise in the system coming from temperature issues. The main function of LPF, as precursor mission of LISA, is the understanding of all the noise sources in the system. This will provide clues to the final leap from LPF sensitivity to LISA one.The main investigations carried out during this thesis can be split into three main categories: (i) the design and validation of the LTP temperature measurement subsystem (TMS); (ii) the extension of the system to the LISA requirements; and (iii) the analysis of the in-flight thermal experiments in the LTP. The thesis is organised as follows: in chapter 2 we describe the designed electronics and the temperature sensors chosen. Aspects related to the coupling of the TMS with other subsystems nearby are discussed in chapter 3. Chapter 4 focuses on the design of the testbed needed for the validation of the TMS. Two different testbeds are described: one for the LTP measurement bandwidth (MBW) and another one for the LISA MBW, 0.1 mHz. In chapter 5 we present the results of the test campaigns: the prototype, the engineering model and the flight model systems were put to test. The results of the investigations in the LISA band are also shown. Chapter 6 contains investigations in view of LISA requirements to reduce excess noise at very low frequency and to reduce the floor noise of the measurement. Chapter 7 focuses on the thermal experiment on-board LPF: a set of thermal excitations are proposed to extract information of the thermal behaviour of the key subsystems of the LTP

    Active vibration control in linear time-invariant and nonlinear systems

    Get PDF
    Active vibration control techniques are widely used in linear time-invariant and nonlinear systems. However, there still exist many difficulties in the application of conventional active vibration control techniques, including the following: (1) In application, some of the degrees of freedom may not be physically accessible to actuation and sensing simultaneously; (2) large flexible structures are difficult in terms of isolating one substructure from the vibration of another; (3) the incomplete understanding of the effects of softening nonlinearity may put conventional active controllers at risk; and (4) global stability of under-actuated nonlinear aeroelastic systems, resulting from actuator failure or motivated by weight and cost constraints imposed on next-generation flight vehicles, is extremely challenging, especially in the case of uncertainty and external disturbances. These intellectual challenges are addressed in this research by linear and nonlinear active control techniques. A new theory for partial pole placement by the method of receptances in the presence of inaccessible degrees of freedom is proposed. By the application of a new double input control and orthogonality conditions on the input and feedback gain vectors, partial pole placement is achieved in a linear fashion while some chosen degrees of freedom are free from both actuation and sensing. A lower bound on the maximum number of degrees of freedom inaccessible to both actuation and sensing is established. A theoretical study is presented on the feasibility of applying active control for the purpose of simultaneous vibration isolation and suppression in large flexible structures by block diagonalisation of the system matrices and at the same time assigning eigenvalues to the chosen substructures separately. The methodology, based on eigenstructure assignment using the method of receptances, is found to work successfully when the open-loop system, with lumped or banded mass matrix, is controllable. A comprehensive study of the effects of softening structural nonlinearity in aeroelastic systems is carried out using the simple example of a pitch-flap wing, with softening cubic nonlinearity in the pitch stiffness. Complex dynamical behaviour, including stable and unstable limit cycles and chaos, is revealed using sinusoidal-input describing functions and numerical integration in the time domain. Bifurcation analysis is undertaken using numerical continuation methods to reveal Hopf, symmetry breaking, fold and period doubling bifurcations. The effects of initial conditions on the system stability and the destabilising effects of softening nonlinearity on aerodynamic responses are considered. The global stability of an under-actuated wing section with torsional nonlinearity, softening or hardening, is addressed using a robust passivity-based continuous sliding-mode control approach. The controller is shown to be capable of stabilising the system in the presence of large matched and mismatched uncertainties and large input disturbance. With known bounds on the input disturbance and nonlinearity uncertainty, the continuous control input is able to globally stabilise the overall system if the zero dynamics of the system are globally exponentially stable. The merits and performance of the proposed methods are exemplified in a series of numerical case studies

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement

    CAS - CERN Accelerator School: RF for Accelerators

    Get PDF
    These proceedings present the lectures given at the twenty-fourth specialized course organized by the CERN Accelerator School (CAS). The course was held in Ebeltoft, Denmark, from 8-17 June, 2010 in collaboration with Aarhus University, with the topic 'RF for Accelerators' While this topic has been covered by CAS previously, early in the 1990s and again in 2000, it was recognized that recent advances in the field warranted an updated course. Following introductory courses covering the background physics, the course attempted to cover all aspects of RF for accelerators; from RF power generation and transport, through cavity and coupler design, electronics and low level control, to beam diagnostics and RF gymnastics. The lectures were supplemented with several sessions of exercises, which were completed by discussion sessions on the solutions.These proceedings present the lectures given at the twenty-fourth specialized course organized by the CERN Accelerator School (CAS). The course was held in Ebeltoft, Denmark, from 8-17 June, 2010 in collaboration with Aarhus University, with the topic 'RF for Accelerators'. While this topic has been covered by CAS previously, early in the 1990s and again in 2000, it was recognized that recent advances in the field warranted an updated course. Following introductory courses covering the background physics, the course attempted to cover all aspects of RF for accelerators/ from RF power generation and transport, through cavity and coupler design, electronics and low level control, to beam diagnostics and RF gymnastics. The lectures were supplemented with several sessions of exercises, which were completed by discussion sessions on the solutions
    • …
    corecore