711 research outputs found

    On q-ary codes correcting all unidirectional errors of a limited magnitude

    Full text link
    We consider codes over the alphabet Q={0,1,..,q-1}intended for the control of unidirectional errors of level l. That is, the transmission channel is such that the received word cannot contain both a component larger than the transmitted one and a component smaller than the transmitted one. Moreover, the absolute value of the difference between a transmitted component and its received version is at most l. We introduce and study q-ary codes capable of correcting all unidirectional errors of level l. Lower and upper bounds for the maximal size of those codes are presented. We also study codes for this aim that are defined by a single equation on the codeword coordinates(similar to the Varshamov-Tenengolts codes for correcting binary asymmetric errors). We finally consider the problem of detecting all unidirectional errors of level l.Comment: 22 pages,no figures. Accepted for publication of Journal of Armenian Academy of Sciences, special issue dedicated to Rom Varshamo

    Two-batch liar games on a general bounded channel

    Get PDF
    We consider an extension of the 2-person R\'enyi-Ulam liar game in which lies are governed by a channel CC, a set of allowable lie strings of maximum length kk. Carole selects x∈[n]x\in[n], and Paul makes tt-ary queries to uniquely determine xx. In each of qq rounds, Paul weakly partitions [n]=A0βˆͺ>...βˆͺAtβˆ’1[n]=A_0\cup >... \cup A_{t-1} and asks for aa such that x∈Aax\in A_a. Carole responds with some bb, and if aβ‰ ba\neq b, then xx accumulates a lie (a,b)(a,b). Carole's string of lies for xx must be in the channel CC. Paul wins if he determines xx within qq rounds. We further restrict Paul to ask his questions in two off-line batches. We show that for a range of sizes of the second batch, the maximum size of the search space [n][n] for which Paul can guarantee finding the distinguished element is ∼tq+k/(Ek(C)(qk))\sim t^{q+k}/(E_k(C)\binom{q}{k}) as qβ†’βˆžq\to\infty, where Ek(C)E_k(C) is the number of lie strings in CC of maximum length kk. This generalizes previous work of Dumitriu and Spencer, and of Ahlswede, Cicalese, and Deppe. We extend Paul's strategy to solve also the pathological liar variant, in a unified manner which gives the existence of asymptotically perfect two-batch adaptive codes for the channel CC.Comment: 26 page
    • …
    corecore