1,605 research outputs found

    Asymptotic rejection of sinusoidal disturbances based voltage balance control in back-to-back power converters

    Get PDF
    This paper addresses the imbalance problem of the dc-link capacitor voltages in the three-level diode-clamped back-to-back power converter. In order to cope with it, a mathematical analysis of the capacitor voltage difference dynamics, based on a continuous model of the converter, is first carried out. It leads to an approximated model which contains explicitly several sinusoidal functions of time. In view of this result, the voltage imbalance phenomenon can be addressed as an output regulation problem, considering the sinusoidal functions as exogenous disturbances. Thus, a novel approach to deal with the mentioned problem in the back- to-back converter is presented. Then, the particular features of the disturbances are used to design several controllers. They all follow an asymptotic disturbance rejection approach. In this way, the estimations of the disturbances are used to apply a control law that cancels them while regulating the capacitor voltage balance as well. Finally, the performance of the proposed control laws is evaluated, presenting the simulation results obtained when the different controllers are implemented.MICINN-FEDER DPI2009-0966

    Induction motor IFOC based speed-controlled drive with asymptotic disturbance compensation

    Get PDF
    This paper presents the design of digitally controlled speed electrical drive, with the asymptotic compensation of external disturbances, implemented by using the IFOC (Indirect Field Oriented Control) torque controlled induction motor. The asymptotic disturbance compensation is achieved by using the DOB (Disturbance Observer) with the IMP (Internal Model Principle). When compared to the existing IMP-based DOB solutions, in this paper the robust stability and disturbance compensation are improved by implementing the minimal order DOB filter. Also, the IMP-based DOB design is improved by employing the asymptotic compensation of all elemental or more complex external disturbances. The dynamic model of the IFOC torque electrical drive is, also, included in the speed-controller and DOB section design. The simulation and experimental measurements presented in the paper illustrate the effectiveness and robustness of the proposed control scheme

    Discrete-time adaptive learning control for parametric uncertainties with unknown periods

    Get PDF
    In this paper, we approach the problem of unknown periods for a class of discrete-time parametric nonlinear systems with nonlinearities which do not necessarily satisfy the sector-bounded condition. The unknown periods hide in the parametric uncertainties, which is difficult to estimate. By incorporating a logic-based switching mechanism, we estimate the period and bound of unknown parameter simultaneously under Lyapunov-based analysis. Rigorous proof is given to demonstrate that a finite number of switchings can guarantee the asymptotic regulation of the nonlinear system considered. The simulation result also shows the efficacy of the proposed switching periodic adaptive control method.Peer reviewe

    DISCRETE-TIME ADAPTIVE CONTROL ALGORITHMS FOR REJECTION OF SINUSOIDAL DISTURBANCES

    Get PDF
    We present new adaptive control algorithms that address the problem of rejecting sinusoids with known frequencies that act on an unknown asymptotically stable linear time-invariant system. To achieve asymptotic disturbance rejection, adaptive control algorithms of this dissertation rely on limited or no system model information. These algorithms are developed in discrete time, meaning that the control computations use sampled-data measurements. We demonstrate the effectiveness of algorithms via analysis, numerical simulations, and experimental testings. We also present extensions to these algorithms that address systems with decentralized control architecture and systems subject to disturbances with unknown frequencies

    Voltage balancing in three-level neutral-point-clamped converters via Luenberger observer

    Get PDF
    This paper addresses the problems associated with the dc-link capacitor voltages of the three-level neutral-point-clamped power converter: the imbalance of the capacitor voltages as well as the presence of an ac-voltage low-frequency oscillation in the dc link of the converter. In order to cope with them, a mathematical analysis of the capacitor voltage difference dynamics, based on a direct average continuous model, is carried out, considering a singular perturbation approach. The analysis leads to a final expression where a sinusoidal disturbance appears explicitly. Consequently, the two problems can be handled together using the ordinary formulation of a problem of regulating the output of a system subject to sinusoidal disturbances, applying classical control theory to design the controller. In this way, the controller is designed including the disturbance estimate provided by a Luenberger observer to asymptotically cancel the disturbance, while keeping also balanced the capacitor voltages. Experiments for a synchronous three-level neutral-point-clamped converter prototype are carried out to evaluate the performance and usefulness of the converter working as a grid-connected inverter under the proposed control law.MICINN-FEDER DPI2009-09661Junta de Andalucía P07-TIC-0299

    Robust motion control SMC point of view

    Get PDF
    In this paper the robust motion control systems in the sliding mode framework are discussed. Due to the fact that a motion control system with n d.o.f may be mathematically formulated in a unique way as a system composed of n second order systems, design of such a system may be formulated in a unique way as a requirement that the generalized coordinates must satisfy certain algebraic constraint. Such a formulation leads naturally to sliding mode framework to be applied. In this approach constraint manifolds are selected to coincide with desired constraints on the generalized coordinates. It has been shown that the CMC can be interpreted as a realization of the acceleration controller thus possessing all robust properties of the acceleration controller framework. The possibility to treat both unconstrained motion (the motion without contact with environment) and constrained motion in the same way is shown

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed

    Direct Adaptive Control for a Trajectory Tracking UAV

    Get PDF
    This research focuses on the theoretical development and analysis of a direct adaptive control algorithm to enable a fixed-wing UAV to track reference trajectories while in the presence of persistent external disturbances. A typical application of this work is autonomous flight through urban environments, where reference trajectories would be provided by a path planning algorithm and the vehicle would be subjected to significant wind gust disturbances. Full 6-DOF nonlinear and linear UAV simulation models are developed and used to study the performance of the direct adaptive control system for various scenarios. A stability proof is developed to prove convergence of the direct adaptive control system under certain conditions. Specific adaptive controller implementation details are provided, including the use of a sensor blending algorithm to address the non-minimum phase properties of the UAV models. The robustness of the adaptive system pertaining to the amount of modeling error that can be accommodated by the controller is studied, and the disturbance rejection capabilities and limitations of the controllers are also analyzed. The overall results of this research demonstrate that the direct adaptive control algorithm can enable trajectory tracking in cases where there are both significant uncertainties in the external disturbances and considerable error in the UAV model
    corecore