356 research outputs found

    Performance Study of Hybrid Spread Spectrum Techniques

    Get PDF
    This thesis focuses on the performance analysis of hybrid direct sequence/slow frequency hopping (DS/SFH) and hybrid direct sequence/fast frequency hopping (DS/FFH) systems under multi-user interference and Rayleigh fading. First, we analyze the performance of direct sequence spread spectrum (DSSS), slow frequency hopping (SFH) and fast frequency hopping (FFH) systems for varying processing gains under interference environment assuming equal bandwidth constraint with Binary Phase Shift Keying (BPSK) modulation and synchronous system. After thorough literature survey, we show that hybrid DS/FFH systems outperform both SFH and hybrid DS/SFH systems under Rayleigh fading and multi-user interference. Also, both hybrid DS/SFH and hybrid DS/FFH show performance improvement with increasing spreading factor and decreasing number of hopping frequencies

    Low-complexity iterative detection techniques for Slow-Frequency-Hop spread-spectrum communications with Reed-Solomon coding.

    Get PDF
    Slow-frequency-hop (SFH) spread-spectrum communications provide a high level of robustness in packet-radio networks for both military and commercial applications. The use of a Reed-Solomon (R-S) code has proven to be a good choice for use in a SFH system for countering the critical channel impairments of partial-band fading and partial-band interference. In particular, it is effective when reliability information of dwell intervals and individual code symbols can be obtained and errors-and-erasures decoding (EE) can be employed at the receiver. In this dissertation, we consider high-data-rate SFH communications for which the channel in each frequency slot is frequency selective, manifesting itself as intersymbol interference (ISI) at the receiver. The use of a packet-level iterative equalization and decoding technique is considered in conjunction with a SFH system employing R-S coding. In each packet-level iteration, MLSE equalization followed by bounded distance EE decoding is used in each dwell interval. Several per-dwell interleaver designs are considered for the SFH systems and it is shown that packet-level iterations result in a significant improvement in performance with a modest increase in detection complexity for a variety of ISI channels. The use of differential encoding in conjunction with the SFH system and packet-level iterations is also considered, and it is shown to provide further improvements in performance with only a modest additional increase in detection complexity. SFH systems employing packet-level iterations with and without differential encoding are evaluated for channels with partial-band interference. Comparisons are made between the performance of this system and the performance of SFH systems using some other codes and iterative decoding techniques

    Reducing Multiple Access Interference in Broadband Multi-User Wireless Networks

    Get PDF
    This dissertation is devoted to developing multiple access interference (MAI) reduction techniques for multi-carrier multi-user wireless communication networks. In multi-carrier code division multiple access (MC-CDMA) systems, a full multipath diversity can be achieved by transmitting one symbol over multiple orthogonal subcarriers by means of spreading codes. However, in frequency selective fading channels, orthogonality among users can be destroyed leading to MAI. MAI represents the main obstacle to support large number of users in multi-user wireless systems. Consequently, MAI reduction becomes a main challenge when designing multi-carrier multi-user wireless networks. In this dissertation, first, we study MC-CDMA systems with different existing MAI reduction techniques. The performance of the studied systems can be further improved by using a fractionally spaced receivers instead of using symbol spaced receivers. A fractionally spaced receiver is obtained by oversampling received signals in a time domain. Second, a novel circular-shift division multiple access (CSDMA) scheme for multi-carrier multi-user wireless systems is developed. In CSDMA, each symbol is first spread onto multiple orthogonal subcarriers in the frequency domain through repetition codes. The obtained frequency-domain signals are then converted to a time-domain representation. The time-domain signals of different users are then circularly shifted by different numbers of locations. The time-domain circular shifting enables the receiver to extract signals from different users with zero or a small amount of MAI. Our results show that the CSDMA scheme can achieve a full multipath diversity with a performance outperforms that of orthogonal frequency division multiple access (OFDMA). Moreover, multipath diversity of CSDMA can be further improved by employing the time-domain oversampling. Performance fluctuations due to a timing offset between transmitter and receiver clocks in MC-CDMA and CSDMA systems can be removed by employing the time-domain oversampling. Third, we study the theoretical error performance of high mobility single-user wireless communication system with doubly selective (time-varying and frequency-selective) fading channel under impacts of imperfect channel state information (CSI). Throughout this dissertation, intensive computer simulations are performed under various system configurations to investigate the obtained theoretical results, excellent agreements between simulation and theoretical results were observed in this dissertation

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Communications over fading channels with partial channel information : performance and design criteria

    Get PDF
    The effects of system parameters upon the performance are quantified under the assumption that some statistical information of the wireless fading channels is available. These results are useful in determining the optimal design of system parameters. Suboptimal receivers are designed for systems that are constrained in terms of implementation complexity. The achievable rates are investigated for a wireless communication system when neither the transmitter nor the receiver has prior knowledge of the channel state information (CSI). Quantitative results are provided for independent and identically distributed (i.i.d.) Gaussian signals. A simple, low-duty-cycle signaling scheme is proposed to improve the information rates for low signal-to-noise ratio (SNR), and the optimal duty cycle is expressed as a function of the fading rate and SNR. It is demonstrated that the resource allocations and duty cycles developed for Gaussian signals can also be applied to systems using other signaling formats. The average SNR and outage probabilities are examined for amplify-and-forward cooperative relaying schemes in Rayleigh fading channels. Simple power allocation strategies are determined by using knowledge of the mean strengths of the channels. Suboptimal algorithms are proposed for cases that optimal receivers are difficult to implement. For systems with multiple transmit antennas, an iterative method is used to avoid the inversion of a data-dependent matrix in decision-directed channel estimation. When CSI is not available, two noncoherent detection algorithms are formulated based on the generalized likelihood ratio test (GLRT). Numerical results are presented to demonstrate the use of GLRT-based detectors in systems with cooperative diversity

    Performance improvements in wireless CDMA communications utilizing adaptive antenna arrays

    Get PDF
    This dissertation studies applications of adaptive antenna arrays and space-time adaptive processing (STAP) in wireless code-division multiple-access (CDMA) communications. The work addresses three aspects of the CDMA communications problems: (I) near-far resistance, (2) reverse link, (3) forward link. In each case, adaptive arrays are applied and their performance is investigated. The near-far effect is a well known problem which affects the reverse link of CDMA communication systems. The near-far resistance of STAP is analyzed for two processing methods: maximal ratio combining and optimum combining. It. is shown that while maximal ratio combining is not near-far resistant, optimum combining is near-far resistant when the number of cochannel interferences is less than the system dimensionality. The near-far effect can be mitigated by accurate power control at the mobile station. With practical limitations, the received signal power at a base station from a power-controlled user is a random variable clue to power control error. The statistical model of signal-to-interference ratio at the antenna array output of a base station is presented, and the outage probability of the CDMA reverse link is analyzed while considering Rayleigh fading, voice activity and power control error. New analytical expressions are obtained and demonstrated by computer simulations. For the application of an adaptive antenna. array at the forward link, a receiver architecture is suggested for the mobile station that utilizes a small two-antenna array For interference suppression. Such a receiver works well only when the channel vector of the desired signal is known. The identifying spreading codes (as in IS-95A for example) are used to provide an adaptive channel vector estimate, and control the beam steering weight, hence improve the receiver performance. Numerical results are presented to illustrate the operation of the proposed receiver model and the improvement in performance and capacity

    Near far resistant detection for CDMA personal communication systems.

    Get PDF
    The growth of Personal Communications, the keyword of the 90s, has already the signs of a technological revolution. The foundations of this revolution are currently set through the standardization of the Universal Mobile Telecommunication System (UMTS), a communication system with synergistic terrestrial and satellite segments. The main characteristic of the UMTS radio interface, is the provision of ISDN services. Services with higher than voice data rates require more spectrum, thus techniques that utilize spectrum as efficiently as possible are currently at the forefront of the research community interests. Two of the most spectrally efficient multiple access technologies, namely. Code Division Multiple Access (CDMA) and Time Division Multiple Access (TDMA) concentrate the efforts of the European telecommunity.This thesis addresses problems and. proposes solutions for CDMA systems that must comply with the UMTS requirements. Prompted by Viterbi's call for further extending the potential of CDMA through signal processing at the receiving end, we propose new Minimum Mean Square Error receiver architectures. MMSE detection schemes offer significant advantages compared to the conventional correlation based receivers as they are NEar FAr Resistant (NEFAR) over a wide range of interfering power levels. The NEFAR characteristic of these detectors reduces considerably the requirements of the power control loops currently found in commercial CDMA systems. MMSE detectors are also found, to have significant performance gains over other well established interference cancellation techniques like the decorrelating detector, especially in heavily loaded system conditions. The implementation architecture of MMSE receivers can be either Multiple-Input Multiple Output (MIMO) or Single-Input Single-Output. The later offers not only complexity that is comparable to the conventional detector, but also has the inherent advantage of employing adaptive algorithms which can be used to provide both the dispreading and the interference cancellation function, without the knowledge of the codes of interfering users. Furthermore, in multipath fading channels, adaptive MMSE detectors can exploit the multipath diversity acting as RAKE combiners. The later ability is distinctive to MMSE based receivers, and it is achieved in an autonomous fashion, without the knowledge of the multipath intensity profile. The communicator achieves its performance objectives by the synergy of the signal processor and the channel decoder. According to the propositions of this thesis, the form of the signal processor needs to be changed, in order to exploit the horizons of spread spectrum signaling. However, maximum likelihood channel decoding algorithms need not change. It is the way that these algorithms are utilized that needs to be revis ed. In this respect, we identify three major utilization scenarios and an attempt is made to quantify which of the three best matches the requirements of a UMTS oriented CDMA radio interface. Based on our findings, channel coding can be used as a mapping technique from the information bit to a more ''intelligent" chip, matching the ''intelligence" of the signal processor
    corecore