34 research outputs found

    Higher-order semi-implicit Taylor schemes for Itô stochastic differential equations

    Get PDF
    AbstractThe paper considers the derivation of families of semi-implicit schemes of weak order N=3.0 (general case) and N=4.0 (additive noise case) for the numerical solution of Itô stochastic differential equations. The degree of implicitness of the schemes depends on the selection of N parameters which vary between 0 and 1 and the families contain as particular cases the 3.0 and 4.0 weak order explicit Taylor schemes. Since the implementation of the multiple integrals that appear in these theoretical schemes is difficult, for the applications they are replaced by simpler random variables, obtaining simplified schemes. In this way, for the multidimensional case with one-dimensional noise, we present an infinite family of semi-implicit simplified schemes of weak order 3.0 and for the multidimensional case with additive one-dimensional noise, we give an infinite family of semi-implicit simplified schemes of weak order 4.0. The mean-square stability of the 3.0 family is analyzed, concluding that, as in the deterministic case, the stability behavior improves when the degree of implicitness grows. Numerical experiments confirming the theoretical results are shown

    Stochastic Parameterization: A Rigorous Approach to Stochastic Three-Dimensional Primitive Equations

    Get PDF
    The atmosphere is a strongly nonlinear and infinite-dimensional dynamical system acting on a multitude of different time and space scales. A possible problem of numerical weather prediction and climate modeling using deterministic parameterization of subscale and unresolved processes is the incomplete consideration of scale interactions. A stochastic treatment of these parameterizations bears the potential to improve the simulations and to provide a better understanding of the scale interactions of the simulated atmospheric variables. The scientific community that is dealing with stochastic meteorological models can be divided into two groups: the first one uses pragmatic approaches to improve existing complex models. The second group pursues a mathematical rigorous way to develop stochastic models, which is currently limited to conceptual models. The overall objective of this work is to narrow the gap between pragmatic approaches and the mathematical rigorous methods. Using conceptual climate models, we point out that a stochastic formulation must not be chosen arbitrarily but has to be derived based on the physics of the system at hand. Equally important is a rigorous numerical implementation of the resulting stochastic model. The dynamics of sub grid and unresolved processes are often described by time continuous stochastic processes, which cannot be treated with deterministic numerical schemes. We show that a stochastic formulation of the three-dimensional primitive equations fits in the mathematical framework of abstract stochastic fluid models. This allows us to utilize recent results regarding existence and uniqueness of solutions of such systems. Based on these theoretical results we propose a Galerkin scheme for the discretization of spatial and stochastic dimensions. Using the framework of mild solutions of stochastic partial differential equations we are able to prove quantitative error bounds and strong mean square convergence. Under additional assumptions we show the convergence of a numerical scheme which combines the Galerkin approximation with a temporal discretization.Stochastische Parametrisierung: Ein Rigoroser Ansatz für die Stochastischen Drei-Dimensionalen Primitiven Gleichungen Die Atmosphäre ist ein von starken Nichtlinearitäten geprägtes, unendlich-linebreak dimensionales dynamisches System, dessen Variablen auf einer Vielzahl verschiedener Raum- und Zeitskalen interagieren. Ein potentielles Problem von Modellen zur numerischen Wettervorhersage und Klimamodellierung, die auf deterministischen Parametrisierungen subskaliger Prozesse beruhen, ist die unzureichende Behandlung der Interaktion zwischen diesen Prozessen und den Modellvariablen. Eine stochastische Beschreibung dieser Parametrisierungen hat das Potential die Qualität der Simulationen zu verbessern und das Verständnis der Skalen-Interaktion atmosphärischer Variablen zu vertiefen. Die wissenschaftlich Gemeinschaft, die sich mit stochastischen meteorologischen Modellen beschäftigt, kann grob in zwei Gruppen unterteilt werden: die erste Gruppe ist bemüht durch pragmatische Ansätze bestehende, komplexe Modelle zu erweitern. Die zweite Gruppe verfolgt einen mathematisch rigorosen Weg, um stochastische Modelle zu entwickeln. Dies ist jedoch aufgrund der mathematischen Komplexität bisher auf konzeptionelle Modelle beschränkt. Das generelle Ziel der vorliegenden Arbeit ist es, die Kluft zwischen den pragmatischen und mathematisch rigorosen Ansätzen zu verringern. Die Diskussion zweier konzeptioneller Klimamodelle verdeutlicht, dass eine stochastische Formulierung nicht willkürlich gewählt werden darf, sondern aus der Physik des betrachteten Systems abgeleitet werden muss. Ebenso unabdingbar ist eine rigorose numerische Implementierung des resultierenden stochastischen Modells. Diesem Aspekt wird besondere Bedeutung zu Teil, da dynamische subskalige Prozesse oftmals durch zeitabhängige stochastische Prozesse beschrieben werden, die sich nicht mit deterministischen numerischen Methoden behandeln lassen. Wir zeigen auf, dass eine stochastische Formulierung der dreidimensionalen primitiven Gleichungen im mathematischen Rahmen abstrakter stochastischer Fluidmodelle behandelt werden kann. Dies ermöglicht die Anwendung kürzlich gewonnener Erkenntnisse bezüglich Existenz und Eindeutigkeit von Lösungen. Wir stellen einen auf dieser theoretischen Grundlage basierenden Galerkin Ansatz zur Diskretisierung der räumlichen und stochastischen Dimensionen vor. Mit Hilfe sogenannter milder Lösungen der stochastischen partiellen Differentialgleichungen leiten wir quantitative Schranken der Diskretisierungsfehler her und zeigen die starke Konvergenz des mittleren quadratischen Fehlers. Unter zusätzlichen Annahmen leiten wir die Konvergenz eines numerischen Verfahrens her, das den Galerkin Ansatz um eine zeitliche Diskretisierung erweitert

    Solving SODEs with large noise by balanced integration methods

    Get PDF
    Isaak E. Solving SODEs with large noise by balanced integration methods. Bielefeld: Universität Bielefeld; 2018

    Quantitative Models in Life Science Business

    Get PDF
    This open access book explores the field of life science business from a multidisciplinary perspective. Applying statistical, mathematical, game-theoretic, and data science tools to pharmaceutical and biotechnology business endeavors, the book describes value creation, value maintenance, and value realization in the life sciences as a sequence of processes using the quantitative language of applied mathematics. Written by experts from a variety of fields, the contributions illustrate the shift from a deterministic to a stochastic view of the processes involved, offering a new perspective on life sciences economics. The book covers topics such as valuing and managing intellectual property in life science, licensing in the pharmaceutical business, outsourcing pharmaceutical R&D, and stochastic modelling of a pharmaceutical supply chain. The book will appeal to scholars of economics and the life sciences, as well as to professionals in chemical and pharmaceutical industries

    Levitation and control of particles with internal degrees of freedom

    Get PDF
    Levitodynamics is a fast growing field that studies the levitation and manipulation of micro- and nanoobjects, fuelled by both fundamental physics questions and technological applications. Due to the isolated nature of trapped particles, levitated systems are highly decoupled from the environment, and offer experimental possibilities that are absent in clamped nanomechanical oscillators. In particular, a central question in quantum physics is how the transition between the classical and quantum world materializes, and levitated objects represent a promising avenue to study this intermediate regime. In the last years, most levitation experiments have been restricted to optically trapped silica nanoparticles in vacuum, controlling the particle's position with intensity modulated laser beams. However, the use of optical traps severely constrains the experiments that can be performed, because few particle materials can withstand the optical absorption and resulting heating in vacuum. This completely prevents the use of objects with internal degrees of freedom, which---coupled to mechanical variables---offer a clear path towards the study of quantum phenomena at the macroscale. In this thesis, we address these issues by considering other types of trap and feedback schemes, achieving excellent control on the dynamics of optically active nanoparticles. With stochastic calculus, simulations and experiments, we study the dynamics of trapped particles in different regimes, considering also a hybrid quadrupole-optical trapping scheme. Then, using a Paul trap of our own design, we demonstrate the trapping, interrogation and feedback cooling of a nanodiamond hosting a single NV center in vacuum, a clear candidate to perform quantum physics experiments at the single spin level. Finally, we discuss and implement an optimal controller to cool the center of mass motion of an optically levitated nanoparticle. The feedback is realized by exerting a Coulomb force on a charged particle with a pair of electrodes, and thus requires no optics.La levitodinàmica és un camp de la física en ràpida expansió que estudia la levitació i manipulació de micro- i nano-objectes, empesa per la possibilitat de solucionar trencaclosques de física fonamental i de desenvolupar noves aplicacions tecnològiques. Gràcies al gran aïllament de les partícules en levitació, l’evolució dels sistemes levitodinàmics està molt desacoplada del seu entorn. Per consegüent, permeten fer experiments que no serien possibles en nanooscil·ladors mecànics sobre substrat. En particular, una qüestió central en física consisteix en entendre com es produeix la transició entre els mons clàssic i quàntic; els objectes en levitació permeten estudiar aquest règim intermedi de manera innovadora. En els últims anys, la majoria d’experiments de levitodinàmica s’han limitat a atrapar òpticament partícules de sílice en el buit, tot controlant la posició de la partícula amb feixos làser modulats. Tot i així, l’ús de trampes òptiques suposa un obstacle a l’hora d’exportar aquests experiments a règims més diversos perquè, a baixes pressions, pocs materials són capaços de suportar les altes temperatures resultants de l’absorció de llum làser. Això impedeix l’ús d’objectes amb graus de llibertat interns, que –acoplats a variables mecàniques– suposen un full de ruta clar per estudiar fenòmens quàntics a escala macroscòpica En aquesta tesi, adrecem aquestes qüestions tot considerant altres tipus de trampa i tècniques de feedback, i assolim un control excel·lent de la dinàmica de nanopartícules òpticament actives en levitació. Mitjançant càlcul estocàstic, simulacions i experiments, estudiem la dinàmica de les partícules en règims diversos, àdhuc considerant un esquema híbrid de trampa de Paul-òptica. A continuació, utilitzant una trampa de Paul, demostrem experimentalment l’atrapament, interrogació i feedback-cooling en el buit d’un nanodiamant que conté un únic NV− center, un clar candidat per a la realització d’experiments de física quàntica amb un únic spin. Finalment, estudiem i implementem un controlador òptim per a refredar el centre de massa d’una partícula òpticament levitada. El feedback es realitza exercint una força de Coulomb sobre una partícula carregada positivament mitjançant un parell d’elèctrodes, i per tant no requereix elements òptic

    Quantitative Models in Life Science Business

    Get PDF
    This open access book explores the field of life science business from a multidisciplinary perspective. Applying statistical, mathematical, game-theoretic, and data science tools to pharmaceutical and biotechnology business endeavors, the book describes value creation, value maintenance, and value realization in the life sciences as a sequence of processes using the quantitative language of applied mathematics. Written by experts from a variety of fields, the contributions illustrate the shift from a deterministic to a stochastic view of the processes involved, offering a new perspective on life sciences economics. The book covers topics such as valuing and managing intellectual property in life science, licensing in the pharmaceutical business, outsourcing pharmaceutical R&D, and stochastic modelling of a pharmaceutical supply chain. The book will appeal to scholars of economics and the life sciences, as well as to professionals in chemical and pharmaceutical industries

    Statistical and numerical methods for diffusion processes with multiple scales

    No full text
    In this thesis we address the problem of data-driven coarse-graining, i.e. the process of inferring simplified models, which describe the evolution of the essential characteristics of a complex system, from available data (e.g. experimental observation or simulation data). Specifically, we consider the case where the coarse-grained model can be formulated as a stochastic differential equation. The main part of this work is concerned with data-driven coarse-graining when the underlying complex system is characterised by processes occurring across two widely separated time scales. It is known that in this setting commonly used statistical techniques fail to obtain reasonable estimators for parameters in the coarse-grained model, due to the multiscale structure of the data. To enable reliable data-driven coarse-graining techniques for diffusion processes with multiple time scales, we develop a novel estimation procedure which decisively relies on combining techniques from mathematical statistics and numerical analysis. We demonstrate, both rigorously and by means of extensive simulations, that this methodology yields accurate approximations of coarse-grained SDE models. In the final part of this work, we then discuss a systematic framework to analyse and predict complex systems using observations. Specifically, we use data-driven techniques to identify simple, yet adequate, coarse-grained models, which in turn allow to study statistical properties that cannot be investigated directly from the time series. The value of this generic framework is exemplified through two seemingly unrelated data sets of real world phenomena.Open Acces

    Stochastic Transport in Upper Ocean Dynamics

    Get PDF
    This open access proceedings volume brings selected, peer-reviewed contributions presented at the Stochastic Transport in Upper Ocean Dynamics (STUOD) 2021 Workshop, held virtually and in person at the Imperial College London, UK, September 20–23, 2021. The STUOD project is supported by an ERC Synergy Grant, and led by Imperial College London, the National Institute for Research in Computer Science and Automatic Control (INRIA) and the French Research Institute for Exploitation of the Sea (IFREMER). The project aims to deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills and accumulation of plastic in the sea. All topics of these proceedings are essential to the scientific foundations of oceanography which has a vital role in climate science. Studies convened in this volume focus on a range of fundamental areas, including: Observations at a high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; Large scale numerical simulations; Data-based stochastic equations for upper ocean dynamics that quantify simulation error; Stochastic data assimilation to reduce uncertainty. These fundamental subjects in modern science and technology are urgently required in order to meet the challenges of climate change faced today by human society. This proceedings volume represents a lasting legacy of crucial scientific expertise to help meet this ongoing challenge, for the benefit of academics and professionals in pure and applied mathematics, computational science, data analysis, data assimilation and oceanography

    Stochastic Transport in Upper Ocean Dynamics

    Get PDF
    This open access proceedings volume brings selected, peer-reviewed contributions presented at the Stochastic Transport in Upper Ocean Dynamics (STUOD) 2021 Workshop, held virtually and in person at the Imperial College London, UK, September 20–23, 2021. The STUOD project is supported by an ERC Synergy Grant, and led by Imperial College London, the National Institute for Research in Computer Science and Automatic Control (INRIA) and the French Research Institute for Exploitation of the Sea (IFREMER). The project aims to deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills and accumulation of plastic in the sea. All topics of these proceedings are essential to the scientific foundations of oceanography which has a vital role in climate science. Studies convened in this volume focus on a range of fundamental areas, including: Observations at a high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; Large scale numerical simulations; Data-based stochastic equations for upper ocean dynamics that quantify simulation error; Stochastic data assimilation to reduce uncertainty. These fundamental subjects in modern science and technology are urgently required in order to meet the challenges of climate change faced today by human society. This proceedings volume represents a lasting legacy of crucial scientific expertise to help meet this ongoing challenge, for the benefit of academics and professionals in pure and applied mathematics, computational science, data analysis, data assimilation and oceanography
    corecore