122 research outputs found

    Stability of numerical method for semi-linear stochastic pantograph differential equations

    Get PDF
    Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 h>0h>0 . Numerical examples further illustrate the obtained theoretical results

    S-ROCK methods for stochastic delay differential equations with one fixed delay

    Get PDF
    We propose stabilized explicit stochastic Runge–Kutta methods of strong order one half for Itô stochastic delay differential equations with one fixed delay. The family of the methods is constructed by embedding Runge–Kutta–Chebyshev methods of order one for ordinary differential equations. The values of a damping parameter of the methods are determined appropriately in order to obtain excellent mean square stability properties. Numerical experiments are carried out to confirm their order of convergence and stability properties

    S-ROCK methods for stochastic delay differential equations with one fixed delay

    Get PDF
    We propose stabilized explicit stochastic Runge–Kutta methods of strong order one half for Itô stochastic delay differential equations with one fixed delay. The family of the methods is constructed by embedding Runge–Kutta–Chebyshev methods of order one for ordinary differential equations. The values of a damping parameter of the methods are determined appropriately in order to obtain excellent mean square stability properties. Numerical experiments are carried out to confirm their order of convergence and stability properties

    Numerical contractivity preserving implicit balanced Milstein-type schemes for SDEs with non-global Lipschitz coefficients

    Get PDF
    Stability analysis, which was investigated in this paper, is one of the main issues related to numerical analysis for stochastic dynamical systems (SDS) and has the same important significance as the convergence one. To this end, we introduced the concept of p p -th moment stability for the n n -dimensional nonlinear stochastic differential equations (SDEs). Specifically, if p=2 p = 2 and the p p -th moment stability constant \bar{K} < 0 , we speak of strict mean square contractivity. The present paper put the emphasis on systematic analysis of the numerical mean square contractivity of two kinds of implicit balanced Milstein-type schemes, e.g., the drift implicit balanced Milstein (DIBM) scheme and the semi-implicit balanced Milstein (SIBM) scheme (or double-implicit balanced Milstein scheme), for SDEs with non-global Lipschitz coefficients. The requirement in this paper allowed the drift coefficient f(x) f(x) to satisfy a one-sided Lipschitz condition, while the diffusion coefficient g(x) g(x) and the diffusion function L1g(x) L^{1}g(x) are globally Lipschitz continuous, which includes the well-known stochastic Ginzburg Landau equation as an example. It was proved that both of the mentioned schemes can well preserve the numerical counterpart of the mean square contractivity of the underlying SDEs under appropriate conditions. These outcomes indicate under what conditions initial perturbations are under control and, thus, have no significant impact on numerical dynamic behavior during the numerical integration process. Finally, numerical experiments intuitively illustrated the theoretical results

    A brief analysis of certain numerical methods used to solve stochastic differential equations

    Get PDF
    Stochastic differential equations (SDE’s) are used to describe systems which are influenced by randomness. Here, randomness is modelled as some external source interacting with the system, thus ensuring that the stochastic differential equation provides a more realistic mathematical model of the system under investigation than deterministic differential equations. The behaviour of the physical system can often be described by probability and thus understanding the theory of SDE’s requires the familiarity of advanced probability theory and stochastic processes. SDE’s have found applications in chemistry, physical and engineering sciences, microelectronics and economics. But recently, there has been an increase in the use of SDE’s in other areas like social sciences, computational biology and finance. In modern financial practice, asset prices are modelled by means of stochastic processes. Thus, continuous-time stochastic calculus plays a central role in financial modelling. The theory and application of interest rate modelling is one of the most important areas of modern finance. For example, SDE’s are used to price bonds and to explain the term structure of interest rates. Commonly used models include the Cox-Ingersoll-Ross model; the Hull-White model; and Heath-Jarrow-Morton model. Since there has been an expansion in the range and volume of interest rate related products being traded in the international financial markets in the past decade, it has become important for investment banks, other financial institutions, government and corporate treasury offices to require ever more accurate, objective and scientific forms for the pricing, hedging and general risk management of the resulting positions. Similar to ordinary differential equations, many SDE’s that appear in practical applications cannot be solved explicitly and therefore require the use of numerical methods. For example, to price an American put option, one requires the numerical solution of a free-boundary partial differential equation. There are various approaches to solving SDE’s numerically. Monte Carlo methods could be used whereby the physical system is simulated directly using a sequence of random numbers. Another method involves the discretisation of both the time and space variables. However, the most efficient and widely applicable approach to solving SDE’s involves the discretisation of the time variable only and thus generating approximate values of the sample paths at the discretisation times. This paper highlights some of the various numerical methods that can be used to solve stochastic differential equations. These numerical methods are based on the simulation of sample paths of time discrete approximations. It also highlights how these methods can be derived from the Taylor expansion of the SDE, thus providing opportunities to derive more advanced numerical schemes.Dissertation (MSc (Mathematics of Finance))--University of Pretoria, 2007.Mathematics and Applied MathematicsMScunrestricte

    Noise induced changes to dynamic behaviour of stochastic delay differential equations

    Get PDF
    This thesis is concerned with changes in the behaviour of solutions to parameter-dependent stochastic delay differential equations

    Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations

    Get PDF
    Influenced by Higham, Mao and Stuart [9], several numerical methods have been developed to study the strong convergence of the numerical solutions to stochastic differential equations (SDEs) under the local Lipschitz condition. These numerical methods include the tamed Euler–Maruyama (EM) method, the tamed Milstein method, the stopped EM, the backward EM, the backward forward EM, etc. Recently, we developed a new explicit method in [23], called the truncated EM method, for the nonlinear SDE dx(t) = f (x(t))dt + g(x(t))dB(t) and established the strong convergence theory under the local Lip- schitz condition plus the Khasminskii-type condition xT f (x) + p−1 |g(x)|2 ≤ K(1 + |x|2). However, due to the page limit there, we did not study the convergence rates for the method, which is the aim of this paper. We will, under some additional conditions, discuss the rates of Lq -convergence of the truncated EM method for 2 ≤ q < p and show that the order of Lq -convergence can be arbitrarily close to q/2
    • …
    corecore