87 research outputs found

    Constructing all qutrit controlled Clifford+T gates in Clifford+T

    Full text link
    For a number of useful quantum circuits, qudit constructions have been found which reduce resource requirements compared to the best known or best possible qubit construction. However, many of the necessary qutrit gates in these constructions have never been explicitly and efficiently constructed in a fault-tolerant manner. We show how to exactly and unitarily construct any qutrit multiple-controlled Clifford+T unitary using just Clifford+T gates and without using ancillae. The T-count to do so is polynomial in the number of controls kk, scaling as O(k3.585)O(k^{3.585}). With our results we can construct ancilla-free Clifford+T implementations of multiple-controlled T gates as well as all versions of the qutrit multiple-controlled Toffoli, while the analogous results for qubits are impossible. As an application of our results, we provide a procedure to implement any ternary classical reversible function on nn trits as an ancilla-free qutrit unitary using O(3nn3.585)O(3^n n^{3.585}) T gates.Comment: 14 page

    QudCom: Towards Quantum Compilation for Qudit Systems

    Full text link
    Qudit-based quantum computation offers unique advantages over qubit-based systems in terms of noise mitigation capabilities as well as algorithmic complexity improvements. However, the software ecosystem for multi-state quantum systems is severely limited. In this paper, we highlight a quantum workflow for describing and compiling qudit systems. We investigate the design and implementation of a quantum compiler for qudit systems. We also explore several key theoretical properties of qudit computing as well as efficient optimization techniques. Finally, we provide demonstrations using physical quantum computers as well as simulations of the proposed quantum toolchain

    Building Qutrit Diagonal Gates from Phase Gadgets

    Full text link
    Phase gadgets have proved to be an indispensable tool for reasoning about ZX-diagrams, being used in optimisation and simulation of quantum circuits and the theory of measurement-based quantum computation. In this paper we study phase gadgets for qutrits. We present the flexsymmetric variant of the original qutrit ZX-calculus, which allows for rewriting that is closer in spirit to the original (qubit) ZX-calculus. In this calculus phase gadgets look as you would expect, but there are non-trivial differences in their properties. We devise new qutrit-specific tricks to extend the graphical Fourier theory of qubits, resulting in a translation between the 'additive' phase gadgets and a 'multiplicative' counterpart we dub phase multipliers. This enables us to generalise the qubit notion of multiple-control to qutrits in two ways. The first type is controlling on a single tritstring, while the second type applies the gate a number of times equal to the tritwise multiplication modulo 3 of the control qutrits.We show how both types of control can be implemented for any qutrit Z or X phase gate, ancilla-free, and using only Clifford and phase gates. The first requires a polynomial number of gates and exponentially small phases, while the second requires an exponential number of gates, but constant sized phases. This is interesting, because such a construction is not possible in the qubit setting. As an application of these results we find a construction for emulating arbitrary qubit diagonal unitaries, and specifically find an ancilla-free emulation for the qubit CCZ gate that only requires three single-qutrit non-Clifford gates, provably lower than the four T gates needed for qubits with ancilla.Comment: In Proceedings QPL 2022, arXiv:2311.0837

    Qutrit Circuits and Algebraic Relations: A Pathway to Efficient Spin-1 Hamiltonian Simulation

    Full text link
    Quantum information processing has witnessed significant advancements through the application of qubit-based techniques within universal gate sets. Recently, exploration beyond the qubit paradigm to dd-dimensional quantum units or qudits has opened new avenues for improving computational efficiency. This paper delves into the qudit-based approach, particularly addressing the challenges presented in the high-fidelity implementation of qudit-based circuits due to increased complexity. As an innovative approach towards enhancing qudit circuit fidelity, we explore algebraic relations, such as the Yang-Baxter-like turnover equation, that may enable circuit compression and optimization. The paper introduces the turnover relation for the three-qutrit time propagator and its potential use in reducing circuit depth. We further investigate whether this relation can be generalized for higher-dimensional quantum circuits, including a focused study on the one-dimensional spin-1 Heisenberg model. Our work outlines both rigorous and numerically efficient approaches to potentially achieve this generalization, providing a foundation for further explorations in the field of qudit-based quantum computing

    Asymptotically Improved Grover's Algorithm in any Dimensional Quantum System with Novel Decomposed nn-qudit Toffoli Gate

    Full text link
    As the development of Quantum computers becomes reality, the implementation of quantum algorithms is accelerating in a great pace. Grover's algorithm in a binary quantum system is one such quantum algorithm which solves search problems with numeric speed-ups than the conventional classical computers. Further, Grover's algorithm is extended to a dd-ary quantum system for utilizing the advantage of larger state space. In qudit or dd-ary quantum system n-qudit Toffoli gate plays a significant role in the accurate implementation of Grover's algorithm. In this paper, a generalized nn-qudit Toffoli gate has been realized using qudits to attain a logarithmic depth decomposition without ancilla qudit. Further, the circuit for Grover's algorithm has been designed for any d-ary quantum system, where d >= 2, with the proposed nn-qudit Toffoli gate so as to get optimized depth as compared to state-of-the-art approaches. This technique for decomposing an n-qudit Toffoli gate requires access to higher energy levels, making the design susceptible to leakage error. Therefore, the performance of this decomposition for the unitary and erasure models of leakage noise has been studied as well

    Experimental high-dimensional Greenberger-Horne-Zeilinger entanglement with superconducting transmon qutrits

    Get PDF
    Multipartite entanglement is one of the core concepts in quantum information science with broad applications that span from condensed matter physics to quantum physics foundations tests. Although its most studied and tested forms encompass two-dimensional systems, current quantum platforms technically allow the manipulation of additional quantum levels. We report the first experimental demonstration of a high-dimensional multipartite entangled state in a superconducting quantum processor. We generate the three-qutrit Greenberger-Horne-Zeilinger state by designing the necessary pulses to perform high-dimensional quantum operations. We obtain the fidelity of 78±1%78\pm 1\%, proving the generation of a genuine three-partite and three-dimensional entangled state. To this date, only photonic devices have been able to create and manipulate these high-dimensional states. Our work demonstrates that another platform, superconducting systems, is ready to exploit high-dimensional physics phenomena and that a programmable quantum device accessed on the cloud can be used to design and execute experiments beyond binary quantum computation.Comment: 6 pages + 6 supplementary information, 3 figures, 1 tabl

    Quantum-classical tradeoffs and multi-controlled quantum gate decompositions in variational algorithms

    Full text link
    Quantum algorithms for unconstrained optimization problems, such as the Quantum Approximate Optimization Algorithm (QAOA), have been proposed as interesting near-term algorithms which operate under a hybrid quantum-classical execution model. Recent work has shown that the QAOA can also be applied to constrained combinatorial optimization problems by incorporating the problem constraints within the design of the variational ansatz - often resulting in quantum circuits containing many multi-controlled gate operations. This paper investigates potential resource tradeoffs for the QAOA when applied to the particular constrained optimization problem of Maximum Independent Set. We consider three variants of the QAOA which make different tradeoffs between the number of classical parameters, quantum gates, and iterations of classical optimization. We also study the quantum cost of decomposing the QAOA circuits on hardware which may support different qubit technologies and native gate sets, and compare the different algorithms using the gate decomposition score which combines the fidelity of the gate operations with the efficiency of the decomposition into a single metric. We find that all three QAOA variants can attain similar performance but the classical and quantum resource costs may vary greatly between them.Comment: 17 pages, 8 figures, 5 table
    • …
    corecore