1,467 research outputs found

    Thermal conduction in classical low-dimensional lattices

    Full text link
    Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable nonlinear systems is briefly discussed. Finally, possible future research themes are outlined.Comment: 90 pages, revised versio

    Exponential decay for the damped wave equation in unbounded domains

    Full text link
    We study the decay of the semigroup generated by the damped wave equation in an unbounded domain. We first prove under the natural geometric control condition the exponential decay of the semigroup. Then we prove under a weaker condition the logarithmic decay of the solutions (assuming that the initial data are smoother). As corollaries, we obtain several extensions of previous results of stabilisation and control

    Nonuniqueness in a minimal model for cell motility

    Get PDF
    Two–phase flow models have been used previously to model cell motility, however these have rapidly become very complicated, including many physical processes, and are opaque. Here we demonstrate that even the simplest one–dimensional, two–phase, poroviscous, reactive flow model displays a number of behaviours relevant to cell crawling. We present stability analyses that show that an asymmetric perturbation is required to cause a spatially uniform, stationary strip of cytoplasm to move, which is relevant to cell polarization. Our numerical simulations identify qualitatively distinct families of travelling–wave solution that co–exist at certain parameter values. Within each family, the crawling speed of the strip has a bell–shaped dependence on the adhesion strength. The model captures the experimentally observed behaviour that cells crawl quickest at intermediate adhesion strengths, when the substrate is neither too sticky nor too slippy
    • …
    corecore