336 research outputs found

    Sequential decoding on intersymbol interference channels with application to magnetic recording

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 1990.Thesis (Master's) -- Bilkent University, 1990.Includes bibliographical references leaves 27-28In this work we treat sequential decoding in the problem of sequence estimation on intersymbol interference ( ISI ) channels. We consider the magnetic recording channel as the particular ISI channel and investigate the coding gains that can be achieved with sequential decoding for different information densities. Since the cutoff rate determines this quantity , we find lower bounds to the cutoff rate. The symmetric cutoff rate is computed as a theoretical lower bound and practical lower bounds are found through simulations. Since the optimum decoding metric is impractical, a sub-optimum metric has been used in the simulations. The results show that this metric can not achieve the cutoff rate in general, but still its performance is not far from that of the optimum metric. We compare the results to those of Immink[9] and see that one can achieve positive coding gains at information densities of practical interest where other practical codes used in magnetic recording show coding loss.Alanyalı, MuratM.S

    Single-Carrier Modulation versus OFDM for Millimeter-Wave Wireless MIMO

    Full text link
    This paper presents results on the achievable spectral efficiency and on the energy efficiency for a wireless multiple-input-multiple-output (MIMO) link operating at millimeter wave frequencies (mmWave) in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e., a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver; these two schemes are compared with a conventional MIMO-OFDM transceiver structure. Our analysis jointly takes into account the peculiar characteristics of MIMO channels at mmWave frequencies, the use of hybrid (analog-digital) pre-coding and post-coding beamformers, the finite cardinality of the modulation structure, and the non-linear behavior of the transmitter power amplifiers. Our results show that the best performance is achieved by single-carrier modulation with time-domain equalization, which exhibits the smallest loss due to the non-linear distortion, and whose performance can be further improved by using advanced equalization schemes. Results also confirm that performance gets severely degraded when the link length exceeds 90-100 meters and the transmit power falls below 0 dBW.Comment: accepted for publication on IEEE Transactions on Communication

    Low-complexity iterative detection techniques for Slow-Frequency-Hop spread-spectrum communications with Reed-Solomon coding.

    Get PDF
    Slow-frequency-hop (SFH) spread-spectrum communications provide a high level of robustness in packet-radio networks for both military and commercial applications. The use of a Reed-Solomon (R-S) code has proven to be a good choice for use in a SFH system for countering the critical channel impairments of partial-band fading and partial-band interference. In particular, it is effective when reliability information of dwell intervals and individual code symbols can be obtained and errors-and-erasures decoding (EE) can be employed at the receiver. In this dissertation, we consider high-data-rate SFH communications for which the channel in each frequency slot is frequency selective, manifesting itself as intersymbol interference (ISI) at the receiver. The use of a packet-level iterative equalization and decoding technique is considered in conjunction with a SFH system employing R-S coding. In each packet-level iteration, MLSE equalization followed by bounded distance EE decoding is used in each dwell interval. Several per-dwell interleaver designs are considered for the SFH systems and it is shown that packet-level iterations result in a significant improvement in performance with a modest increase in detection complexity for a variety of ISI channels. The use of differential encoding in conjunction with the SFH system and packet-level iterations is also considered, and it is shown to provide further improvements in performance with only a modest additional increase in detection complexity. SFH systems employing packet-level iterations with and without differential encoding are evaluated for channels with partial-band interference. Comparisons are made between the performance of this system and the performance of SFH systems using some other codes and iterative decoding techniques

    Digital communication over fixed time-contin- uous channels with memory- with special application to telephone channels

    Get PDF
    Digital communication over fixed time- continuous channels with memor

    Communication sciences Semiannual report, 1 Jul. - 31 Dec. 1965

    Get PDF
    Statistical communication theory for learning and adaptive system programs, and signal desig

    Reduced Receivers for Faster-than-Nyquist Signaling and General Linear Channels

    Get PDF
    Fast and reliable data transmission together with high bandwidth efficiency are important design aspects in a modern digital communication system. Many different approaches exist but in this thesis bandwidth efficiency is obtained by increasing the data transmission rate with the faster-than-Nyquist (FTN) framework while keeping a fixed power spectral density (PSD). In FTN consecutive information carrying symbols can overlap in time and in that way introduce a controlled amount of intentional intersymbol interference (ISI). This technique was introduced already in 1975 by Mazo and has since then been extended in many directions. Since the ISI stemming from practical FTN signaling can be of significant duration, optimum detection with traditional methods is often prohibitively complex, and alternative equalization methods with acceptable complexity-performance tradeoffs are needed. The key objective of this thesis is therefore to design reduced-complexity receivers for FTN and general linear channels that achieve optimal or near-optimal performance. Although the performance of a detector can be measured by several means, this thesis is restricted to bit error rate (BER) and mutual information results. FTN signaling is applied in two ways: As a separate uncoded narrowband communication system or in a coded scenario consisting of a convolutional encoder, interleaver and the inner ISI mechanism in serial concatenation. Turbo equalization where soft information in the form of log likelihood ratios (LLRs) is exchanged between the equalizer and the decoder is a commonly used decoding technique for coded FTN signals. The first part of the thesis considers receivers and arising stability problems when working within the white noise constraint. New M-BCJR algorithms for turbo equalization are proposed and compared to reduced-trellis VA and BCJR benchmarks based on an offset label idea. By adding a third low-complexity M-BCJR recursion, LLR quality is improved for practical values of M. M here measures the reduced number of BCJR computations for each data symbol. An improvement of the minimum phase conversion that sharpens the focus of the ISI model energy is proposed. When combined with a delayed and slightly mismatched receiver, the decoding allows a smaller M without significant loss in BER. The second part analyzes the effect of the internal metric calculations on the performance of Forney- and Ungerboeck-based reduced-complexity equalizers of the M-algorithm type for both ISI and multiple-input multiple-output (MIMO) channels. Even though the final output of a full-complexity equalizer is identical for both models, the internal metric calculations are in general different. Hence, suboptimum methods need not produce the same final output. Additionally, new models working in between the two extremes are proposed and evaluated. Note that the choice of observation model does not impact the detection complexity as the underlying algorithm is unaltered. The last part of the thesis is devoted to a different complexity reducing approach. Optimal channel shortening detectors for linear channels are optimized from an information theoretical perspective. The achievable information rates of the shortened models as well as closed form expressions for all components of the optimal detector of the class are derived. The framework used in this thesis is more general than what has been previously used within the area

    TCM coding of PPM based modulations for Infrared WLAN's impaired by ISI

    Get PDF
    In this communication we consider the use of PPM based modulation methods, such as the hybrid modulation method called Amplitude and Pulse-Position Modulation (APPM) and Overlapping Pulse-Position Modulation (OPPM) to improve the performance of infrared WLAN’s, by the use of Trellis-Coded Modulation (TCM) codes. We describe the best code search and results, which demonstrate that, even with trellis codes of moderate complexity, non-negligible coding gains can be obtained without bandwidth expansion. Monte Carlo simulations have been done to compare uncoded PPM against APPM and OPPM TCM coded systems performances, on ceiling-bounce channel models for various values of delay spread. Although our codes were derived for the AWGN channel without Inter-Symbol Interference (ISI) awareness, their behavior in multipath dispersion channels is quite effective

    Joint coding and modulation designs for bandlimited satellite channels

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.Includes bibliographical references.by Joseph Y. N. Hui.M.S

    Advanced Communication Theory Techniques TECHNICAL DOCUMENTARY REPORT NO. ASD-TDR-63-186

    Get PDF
    Under this contract a number of topics have been studied and analyzed in detail in order to bring together and somewhat extend the concepts of communication theory as they apply to some current problems in digital communication systems. Radio wave channels are characterized by a model\u27 which accounts for both multiplicative and additive disturbances, A large amount of experimental data pertaining to radio disturbances is evaluated and correlated. She. importance of the Rayleigh fading channel is emphasized and previous work is extended to determine the capacity and efficiency of the Rayleigh, channel. Detection theory concepts have been extended to treat the problem of signal detection in the presence of statistically unknown additive disturbances. Several detectors based on non-parametric statistical techniques are treated in detail. Obese detectors are compared to the conventional likelihood detectors. Design procedures are formulated. Signal design techniques are used to optimize transmitted wave- forms and the improvement in system performance is determined. The criterion used in this\u27 analysis is the minimization of intersymbol influence and the minimization of transmitter power for a fixed probability of received, errors . The tradeoffs available between transmitter power and coding complexity are thoroughly investigated for the binary symmetric channel. Results are obtained for both Hamming and Bose-Chandhuri codes. Recommendations for further work in promising areas are made, the need to supplement theoretical work with experimental work is pointed ou
    corecore