417 research outputs found

    Asymptotic enumeration and limit laws for graphs of fixed genus

    Full text link
    It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S_g of genus g grows asymptotically like c(g)n5(g1)/21γnn!c^{(g)}n^{5(g-1)/2-1}\gamma^n n! where c(g)>0c^{(g)}>0, and γ27.23\gamma \approx 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0, obtained by Gimenez and Noy. An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S_g has a unique 2-connected component of linear size with high probability

    On the probability of planarity of a random graph near the critical point

    Get PDF
    Consider the uniform random graph G(n,M)G(n,M) with nn vertices and MM edges. Erd\H{o}s and R\'enyi (1960) conjectured that the limit \lim_{n \to \infty} \Pr\{G(n,\textstyle{n\over 2}) is planar}} exists and is a constant strictly between 0 and 1. \L uczak, Pittel and Wierman (1994) proved this conjecture and Janson, \L uczak, Knuth and Pittel (1993) gave lower and upper bounds for this probability. In this paper we determine the exact probability of a random graph being planar near the critical point M=n/2M=n/2. For each λ\lambda, we find an exact analytic expression for p(λ)=limnPrG(n,n2(1+λn1/3))isplanar. p(\lambda) = \lim_{n \to \infty} \Pr{G(n,\textstyle{n\over 2}(1+\lambda n^{-1/3})) is planar}. In particular, we obtain p(0)0.99780p(0) \approx 0.99780. We extend these results to classes of graphs closed under taking minors. As an example, we show that the probability of G(n,n2)G(n,\textstyle{n\over 2}) being series-parallel converges to 0.98003. For the sake of completeness and exposition we reprove in a concise way several basic properties we need of a random graph near the critical point.Comment: 10 pages, 1 figur

    The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees

    Full text link
    A unicellular map is a map which has only one face. We give a bijection between a dominant subset of rooted unicellular maps of fixed genus and a set of rooted plane trees with distinguished vertices. The bijection applies as well to the case of labelled unicellular maps, which are related to all rooted maps by Marcus and Schaeffer's bijection. This gives an immediate derivation of the asymptotic number of unicellular maps of given genus, and a simple bijective proof of a formula of Lehman and Walsh on the number of triangulations with one vertex. From the labelled case, we deduce an expression of the asymptotic number of maps of genus g with n edges involving the ISE random measure, and an explicit characterization of the limiting profile and radius of random bipartite quadrangulations of genus g in terms of the ISE.Comment: 27pages, 6 figures, to appear in PTRF. Version 2 includes corrections from referee report in sections 6-

    Connectivity for bridge-addable monotone graph classes

    Full text link
    A class A of labelled graphs is bridge-addable if for all graphs G in A and all vertices u and v in distinct connected components of G, the graph obtained by adding an edge between u and u is also in A; the class A is monotone if for all G in A and all subgraphs H of G, H is also in A. We show that for any bridge-addable, monotone class A whose elements have vertex set 1,...,n, the probability that a uniformly random element of A is connected is at least (1-o_n(1)) e^{-1/2}, where o_n(1) tends to zero as n tends to infinity. This establishes the special case of a conjecture of McDiarmid, Steger and Welsh when the condition of monotonicity is added. This result has also been obtained independently by Kang and Panagiotiou (2011).Comment: 11 page

    The enumeration of planar graphs via Wick's theorem

    Get PDF
    A seminal technique of theoretical physics called Wick's theorem interprets the Gaussian matrix integral of the products of the trace of powers of Hermitian matrices as the number of labelled maps with a given degree sequence, sorted by their Euler characteristics. This leads to the map enumeration results analogous to those obtained by combinatorial methods. In this paper we show that the enumeration of the graphs embeddable on a given 2-dimensional surface (a main research topic of contemporary enumerative combinatorics) can also be formulated as the Gaussian matrix integral of an ice-type partition function. Some of the most puzzling conjectures of discrete mathematics are related to the notion of the cycle double cover. We express the number of the graphs with a fixed directed cycle double cover as the Gaussian matrix integral of an Ihara-Selberg-type function.Comment: 23 pages, 2 figure
    corecore