64 research outputs found

    Adiabatic-Nonadiabatic Transition in the Diffusive Hamiltonian Dynamics of a Classical Holstein Polaron

    Get PDF
    We study the Hamiltonian dynamics of a free particle injected onto a chain containing a periodic array of harmonic oscillators in thermal equilibrium. The particle interacts locally with each oscillator, with an interaction that is linear in the oscillator coordinate and independent of the particle's position when it is within a finite interaction range. At long times the particle exhibits diffusive motion, with an ensemble averaged mean-squared displacement that is linear in time. The diffusion constant at high temperatures follows a power law D ~ T^{5/2} for all parameter values studied. At low temperatures particle motion changes to a hopping process in which the particle is bound for considerable periods of time to a single oscillator before it is able to escape and explore the rest of the chain. A different power law, D ~ T^{3/4}, emerges in this limit. A thermal distribution of particles exhibits thermally activated diffusion at low temperatures as a result of classically self-trapped polaronic states.Comment: 15 pages, 4 figures Submitted to Physical Review

    Rheological Model for Wood

    Full text link
    Wood as the most important natural and renewable building material plays an important role in the construction sector. Nevertheless, its hygroscopic character basically affects all related mechanical properties leading to degradation of material stiffness and strength over the service life. Accordingly, to attain reliable design of the timber structures, the influence of moisture evolution and the role of time- and moisture-dependent behaviors have to be taken into account. For this purpose, in the current study a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive constitutive model for wood, with all material constants being defined as a function of moisture content, is presented. The corresponding numerical integration approach, with additive decomposition of the total strain is developed and implemented within the framework of the finite element method (FEM). Moreover to preserve a quadratic rate of asymptotic convergence the consistent tangent operator for the whole model is derived. Functionality and capability of the presented material model are evaluated by performing several numerical verification simulations of wood components under different combinations of mechanical loading and moisture variation. Additionally, the flexibility and universality of the introduced model to predict the mechanical behavior of different species are demonstrated by the analysis of a hybrid wood element. Furthermore, the proposed numerical approach is validated by comparisons of computational evaluations with experimental results.Comment: 37 pages, 13 figures, 10 table

    An Extended Network Model with a Packages Diffusion Process

    Full text link
    The dynamics of a packages diffusion process within a selforganized network is analytically studied by means of an extended ff% -spin facilitated kinetic Ising model (Fredrickson-Andersen model) using a Fock-space representation for the master equation. To map the three component system (active, passive and packages cells) onto a lattice we apply two types of second quantized operators. The active cells correspond to mobile states whereas the passive cells correspond to immobile states of the Fredrickson-Andersen model. An inherent cooperativity is included assuming that the local dynamics and subsequently the local mobilities are restricted by the occupation of neighboring cells. Depending on a temperature-like parameter h−1h^{-1} (interconnectivity) the diffusive process of the packages (information) can be almost stopped, thus we get a well separation of the time regimes and a quasi-localization for the intermediate range at low temperatures.Comment: 13 pages and 1 figur

    Finite-size critical scaling in Ising spin glasses in the mean-field regime

    Get PDF
    We study in Ising spin glasses the finite-size effects near the spin-glass transition in zero field and at the de Almeida-Thouless transition in a field by Monte Carlo methods and by analytical approximations. In zero field, the finite-size scaling function associated with the spin-glass susceptibility of the Sherrington-Kirkpatrick mean-field spin-glass model is of the same form as that of one-dimensional spin-glass models with power-law long-range interactions in the regime where they can be a proxy for the Edwards-Anderson short-range spin-glass model above the upper critical dimension. We also calculate a simple analytical approximation for the spin-glass susceptibility crossover function. The behavior of the spin-glass susceptibility near the de Almeida-Thouless transition line has also been studied, but here we have only been able to obtain analytically its behavior in the asymptotic limit above and below the transition. We have also simulated the one-dimensional system in a field in the non-mean-field regime to illustrate that when the Imry-Ma droplet length scale exceeds the system size one can then be erroneously lead to conclude that there is a de Almeida-Thouless transition even though it is absent.Comment: 10 pages, 7 figure

    Asymptotic properties of free monoid morphisms

    Full text link
    Motivated by applications in the theory of numeration systems and recognizable sets of integers, this paper deals with morphic words when erasing morphisms are taken into account. Cobham showed that if an infinite word w=g(fω(a))w =g(f^\omega(a)) is the image of a fixed point of a morphism ff under another morphism gg, then there exist a non-erasing morphism σ\sigma and a coding τ\tau such that w=τ(σω(b))w =\tau(\sigma^\omega(b)). Based on the Perron theorem about asymptotic properties of powers of non-negative matrices, our main contribution is an in-depth study of the growth type of iterated morphisms when one replaces erasing morphisms with non-erasing ones. We also explicitly provide an algorithm computing σ\sigma and τ\tau from ff and gg.Comment: 25 page

    Front propagation in laminar flows

    Full text link
    The problem of front propagation in flowing media is addressed for laminar velocity fields in two dimensions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating flow. Production terms of Fisher-Kolmogorov-Petrovskii-Piskunov type and of Arrhenius type are considered under the assumption of no feedback of the concentration on the velocity. Numerical simulations of advection-reaction-diffusion equations have been performed by an algorithm based on discrete-time maps. The results show a generic enhancement of the speed of front propagation by the underlying flow. For small molecular diffusivity, the front speed VfV_f depends on the typical flow velocity UU as a power law with an exponent depending on the topological properties of the flow, and on the ratio of reactive and advective time-scales. For open-streamline flows we find always Vf∼UV_f \sim U, whereas for cellular flows we observe Vf∼U1/4V_f \sim U^{1/4} for fast advection, and Vf∼U3/4V_f \sim U^{3/4} for slow advection.Comment: Enlarged, revised version, 37 pages, 14 figure
    • …
    corecore