38 research outputs found

    Applications of graph-based codes in networks: analysis of capacity and design of improved algorithms

    Get PDF
    The conception of turbo codes by Berrou et al. has created a renewed interest in modern graph-based codes. Several encouraging results that have come to light since then have fortified the role these codes shall play as potential solutions for present and future communication problems. This work focuses on both practical and theoretical aspects of graph-based codes. The thesis can be broadly categorized into three parts. The first part of the thesis focuses on the design of practical graph-based codes of short lengths. While both low-density parity-check codes and rateless codes have been shown to be asymptotically optimal under the message-passing (MP) decoder, the performance of short-length codes from these families under MP decoding is starkly sub-optimal. This work first addresses the structural characterization of stopping sets to understand this sub-optimality. Using this characterization, a novel improved decoder that offers several orders of magnitude improvement in bit-error rates is introduced. Next, a novel scheme for the design of a good rate-compatible family of punctured codes is proposed. The second part of the thesis aims at establishing these codes as a good tool to develop reliable, energy-efficient and low-latency data dissemination schemes in networks. The problems of broadcasting in wireless multihop networks and that of unicast in delay-tolerant networks are investigated. In both cases, rateless coding is seen to offer an elegant means of achieving the goals of the chosen communication protocols. It was noticed that the ratelessness and the randomness in encoding process make this scheme specifically suited to such network applications. The final part of the thesis investigates an application of a specific class of codes called network codes to finite-buffer wired networks. This part of the work aims at establishing a framework for the theoretical study and understanding of finite-buffer networks. The proposed Markov chain-based method extends existing results to develop an iterative Markov chain-based technique for general acyclic wired networks. The framework not only estimates the capacity of such networks, but also provides a means to monitor network traffic and packet drop rates on various links of the network.Ph.D.Committee Chair: Fekri, Faramarz; Committee Member: Li, Ye; Committee Member: McLaughlin, Steven; Committee Member: Sivakumar, Raghupathy; Committee Member: Tetali, Prasa

    Concentration of Measure Inequalities in Information Theory, Communications and Coding (Second Edition)

    Full text link
    During the last two decades, concentration inequalities have been the subject of exciting developments in various areas, including convex geometry, functional analysis, statistical physics, high-dimensional statistics, pure and applied probability theory, information theory, theoretical computer science, and learning theory. This monograph focuses on some of the key modern mathematical tools that are used for the derivation of concentration inequalities, on their links to information theory, and on their various applications to communications and coding. In addition to being a survey, this monograph also includes various new recent results derived by the authors. The first part of the monograph introduces classical concentration inequalities for martingales, as well as some recent refinements and extensions. The power and versatility of the martingale approach is exemplified in the context of codes defined on graphs and iterative decoding algorithms, as well as codes for wireless communication. The second part of the monograph introduces the entropy method, an information-theoretic technique for deriving concentration inequalities. The basic ingredients of the entropy method are discussed first in the context of logarithmic Sobolev inequalities, which underlie the so-called functional approach to concentration of measure, and then from a complementary information-theoretic viewpoint based on transportation-cost inequalities and probability in metric spaces. Some representative results on concentration for dependent random variables are briefly summarized, with emphasis on their connections to the entropy method. Finally, we discuss several applications of the entropy method to problems in communications and coding, including strong converses, empirical distributions of good channel codes, and an information-theoretic converse for concentration of measure.Comment: Foundations and Trends in Communications and Information Theory, vol. 10, no 1-2, pp. 1-248, 2013. Second edition was published in October 2014. ISBN to printed book: 978-1-60198-906-

    Statistical physics methods for sparse graph codes

    Get PDF
    This thesis deals with the asymptotic analysis of coding systems based on sparse graph codes. The goal of this work is to analyze the decoder performance when transmitting over a general binary-input memoryless symmetric-output (BMS) channel. We consider the two most fundamental decoders, the optimal maximum a posteriori (MAP) decoder and the sub-optimal belief propagation (BP) decoder. The BP decoder has low-complexity and its performance analysis is, hence, of great interest. The MAP decoder, on the other hand, is computationally expensive. However, the MAP decoder analysis provides fundamental limits on the code performance. As a result, the MAP-decoding analysis is important in designing codes which achieve the ultimate Shannon limit. It would be fair to say that, over the binary erasure channel (BEC), the performance of the MAP and BP decoder has been thoroughly understood. However, much less is known in the case of transmission over general BMS channels. The combinatorial methods used for analyzing the case of BEC do not extend easily to the general case. The main goal of this thesis is to advance the analysis in the case of transmission over general BMS channels. To do this, we use the recent convergence of statistical physics and coding theory. Sparse graph codes can be mapped into appropriate statistical physics spin-glass models. This allows us to use sophisticated methods from rigorous statistical mechanics like the correlation inequalities, interpolation method and cluster expansions for the purpose of our analysis. One of the main results of this thesis is that in some regimes of noise, the BP decoder is optimal for a typical code in an ensemble of codes. This result is a pleasing extension of the same result for the case of BEC. An important consequence of our results is that the heuristic predictions of the replica and cavity methods of spin-glass theory are correct in the realm of sparse graph codes

    Asymptotic Analysis and Spatial Coupling of Counter Braids

    Get PDF
    A counter braid (CB) is a novel counter architecture introduced by Lu et al. in 2007 for per-flow measurements on high-speed links which can be decoded with low complexity using message passing (MP). CBs achieve an asymptotic compression rate (under optimal decoding) that matches the entropy lower bound of the flow size distribution. In this paper, we apply the concept of spatial coupling to CBs to improve the performance of the original CBs and analyze the performance of the resulting spatially-coupled CBs (SC-CBs). We introduce an equivalent bipartite graph representation of CBs with identical iteration- by-iteration finite-length and asymptotic performance. Based on this equivalent representation, we then analyze the asymptotic performance of single-layer CBs and SC-CBs under the MP decoding algorithm proposed by Lu et al.. In particular, we derive the potential threshold of the uncoupled system and show that it is equal to the area threshold. We also derive the Maxwell decoder for CBs and prove that the potential threshold is an upper bound on the Maxwell decoding threshold, which, in turn, is a lower bound on the maximum a posteriori (MAP) decoding threshold. We then show that the area under the extended MP extrinsic information transfer curve (defined for the equivalent graph), computed for the expected residual CB graph when a peeling decoder equivalent to the MP decoder stops, is equal to zero precisely at the area threshold. This, combined with the analysis of the Maxwell decoder and simulation results, leads us to the conjecture that the potential threshold is in fact equal to the Maxwell decoding threshold and hence a lower bound on the MAP decoding threshold. Interestingly, SC-CBs do not show the well-known phenomenon of threshold saturation of the MP decoding threshold to the potential threshold characteristic of spatially-coupled low-density parity-check codes and other coupled systems. However, SC-CBs yield better MP decoding thresholds than their uncoupled counterparts. Finally, we also consider SC-CBs as a compressed sensing scheme and show that low undersampling factors can be achieved
    corecore