139 research outputs found

    Selective Combining for Hybrid Cooperative Networks

    Full text link
    In this study, we consider the selective combining in hybrid cooperative networks (SCHCNs scheme) with one source node, one destination node and NN relay nodes. In the SCHCN scheme, each relay first adaptively chooses between amplify-and-forward protocol and decode-and-forward protocol on a per frame basis by examining the error-detecting code result, and NcN_c (1NcN1\leq N_c \leq N) relays will be selected to forward their received signals to the destination. We first develop a signal-to-noise ratio (SNR) threshold-based frame error rate (FER) approximation model. Then, the theoretical FER expressions for the SCHCN scheme are derived by utilizing the proposed SNR threshold-based FER approximation model. The analytical FER expressions are validated through simulation results.Comment: 27 pages, 8 figures, IET Communications, 201

    Rate enhancement and multi-relay selection schemes for application in wireless cooperative networks

    Get PDF
    In this thesis new methods are presented to achieve performance enhancement in wireless cooperative networks. In particular, techniques to improve transmission rate, mitigate asynchronous transmission and maximise end-to-end signal-to-noise ratio are described. An offset transmission scheme with full interference cancellation for a two-hop synchronous network with frequency flat links and four relays is introduced. This approach can asymptotically, as the symbol block size increases, achieve maximum transmission rate together with full cooperative diversity provided the destination node has multiple antennas. A novel full inter-relay interference cancellation method that also achieves asymptotically maximum rate and full cooperative diversity is then designed which only requires a single antenna at the destination node. Extension to asynchronous networks is then considered through the use of orthogonal frequency division multiplexing (OFDM) type transmission with a cyclic prefix, and interference cancellation techniques are designed for situations when synchronization errors are present in only the second hop or both the first and second hop. End-to-end bit error rate evaluations, with and without outer coding, are used to assess the performance of the various offset transmission schemes. Multi-relay selection methods for cooperative amplify and forward type networks are then studied in order to overcome the degradation of end-to-end bit error rate performance in single-relay selection networks when there are feedback errors in the destination to relay node links. Outage probability analysis for two and four relay selection is performed to show the advantage of multi-relay selection when no interference occurs and when adjacent cell interference is present both at the relay nodes and the destination node. Simulation studies are included which support the theoretical expressions. Finally, outage probability analysis of a cognitive amplify and forward type relay network with cooperation between certain secondary users, chosen by single and multi-relay (two and four) selection is presented. The cognitive relays are assumed to exploit an underlay approach, which requires adherence to an interference constraint on the primary user. The relay selection is performed either with a max-min strategy or one based on maximising exact end-to-end signal-to-noise ratio. The analyses are again confirmed by numerical evaluations

    Distributed transmission schemes for wireless communication networks

    Get PDF
    In this thesis new techniques are presented to achieve performance enhancement in wireless cooperative networks. In particular, techniques to improve transmission rate and maximise end-to-end signal-to-noise ratio are described. An offset transmission scheme with full interference cancellation for a wireless cooperative network with frequency flat links and four relays is introduced. This method can asymptotically, as the size of the symbol block increases, achieve maximum transmission rate together with full cooperative diversity provided the destination node has multiple antennas. A novel full inter-relay interference cancellation method that also achieves asymptotically maximum rate and full cooperative diversity is then designed for which the destination node only requires a single antenna. Two- and four-relay selection schemes for wireless cooperative amplify and forward type networks are then studied in order to overcome the degradation of end-to-end bit error rate performance in single-relay selection networks when there are feedback errors in the relay to destination node links. Outage probability analysis for a four-relay selection scheme without interference is undertaken. Outage probability analysis of a full rate distributed transmission scheme with inter-relay interference is also studied for best single- and two-relay selection networks. The advantage of multi-relay selection when no interference occurs and when adjacent cell interference is present at the relay nodes is then shown theoretically. Simulation results for outage probability analysis are included which support the theoretical expressions. Finally, outage probability analysis of a cognitive amplify and forward type relay network with cooperation between certain secondary users, chosen by best single-, two- and four-relay selection is presented. The cognitive amplify and forward relays are assumed to exploit an underlay approach, which requires adherence to an interference constraint on the primary user. The relay selection scheme is performed either with a max−min strategy or one based on maximising exact end-to-end signal-to-noise ratio. The outage probability analyses are again confirmed by numerical evaluations

    Distributed space-time block coding in cooperative relay networks with application in cognitive radio

    Get PDF
    Spatial diversity is an effective technique to combat the effects of severe fading in wireless environments. Recently, cooperative communications has emerged as an attractive communications paradigm that can introduce a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. In this thesis, a new approach to cooperative communications via distributed extended orthogonal space-time block coding (D-EO-STBC) based on limited partial feedback is proposed for cooperative relay networks with three and four relay nodes and then generalized for an arbitrary number of relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain, and it has certain properties that make it alluring for practical systems such as orthogonality, flexibility, low computational complexity and decoding delay, and high robustness to node failure. Versions of the closed-loop D-EO-STBC scheme based on cooperative orthogonal frequency division multiplexing type transmission are also proposed for both flat and frequency-selective fading channels which can overcome imperfect synchronization in the network. As such, this proposed technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, this scheme is extended for two-way relay networks through a three-time slot framework. On the other hand, to substantially reduce the feedback channel overhead, limited feedback approaches based on parameter quantization are proposed. In particular, an optimal one-bit partial feedback approach is proposed for the generalized D-O-STBC scheme to maximize the array gain. To further enhance the end-to-end bit error rate performance of the cooperative relay system, a relay selection scheme based on D-EO-STBC is then proposed. Finally, to highlight the utility of the proposed D-EO-STBC scheme, an application to cognitive radio is studied

    A virtual MIMO dual-hop architecture based on hybrid spatial modulation

    Get PDF
    International audienceIn this paper, we propose a novel Virtual Multiple-Input-Multiple-Output (VMIMO) architecture based on the concept of Spatial Modulation (SM). Using a dual-hop and Decode-and-Forward protocol, we form a distributed system, called Dual-Hop Hybrid SM (DH-HSM). DH-HSM conveys information from a Source Node (SN) to a Destination Node (DN) via multiple Relay Nodes (RNs). The spatial position of the RNs is exploited for transferring information in addition to, or even without, a conventional symbol. In order to increase the performance of our architecture, while keeping the complexity of the RNs and DN low, we employ linear precoding using Channel State Information (CSI) at the SN. In this way, we form a Receive-Spatial Modulation (R-SM) pattern from the SN to the RNs, which is able to employ a centralized coordinated or a distributed uncoordinated detection algorithm at the RNs. In addition, we focus on the SN and propose two regularized linear precoding methods that employ realistic Imperfect Channel State Information at the Transmitter. The power of each precoder is analyzed theoretically. Using the Bit Error Rate (BER) metric, we evaluate our architecture against the following benchmark systems: 1) single relay; 2) best relay selection; 3) distributed Space Time Block Coding (STBC) VMIMO scheme; and 4) the direct communication link. We show that DH-HSM is able to achieve significant Signal-to-Noise Ratio (SNR) gains, which can be as high as 10.5 dB for a very large scale system setup. In order to verify our simulation results, we provide an analytical framework for the evaluation of the Average Bit Error Probability (ABEP)

    On the Performance of SR and FR Protocols for OSTBC based AF-MIMO Relay System with Channel and Noise Correlations

    Get PDF
    This paper proposes selection relaying (SR) protocol for a cooperative multiple-input multiple-output (MIMO) relay system that consists of a direct link between a source and a destination. The system has only receive-side channel state information (CSI), spatially correlated MIMO channels, and the receiver nodes observe spatially correlated noise. The transmit nodes employ orthogonal space-time block codes (OSTBC), whereas the receiver nodes employ optimum minimum mean-square-error (MMSE) detection. The SR protocol, which transmits via the relay only when the direct link between the source and destination is in outage, is compared with the fixed relaying (FR) protocol which always uses the relay. By deriving novel asymptotic expressions of the outage probabilities, it is analytically shown that both protocols provide the same diversity gain. However, the coding gain (CG) of the SR protocol can be much better than that of the FR protocol. In particular, when all MIMO links have the same effective rank, irrespective of its value, the SR protocol provides better CG than the FR scheme if the target information rate is greater than ln2(3) bits per channel use. Simulation results support theoretical analysis and show that the SR scheme can significantly outperform FR method, which may justify the increased complexity due to one-bit feedback requirement in the SR protocol

    On the Performance of SR and FR Protocols for OSTBC based AF-MIMO Relay System with Channel and Noise Correlations

    Get PDF
    This paper proposes selection relaying (SR) protocol for a cooperative multiple-input multiple-output (MIMO) relay system that consists of a direct link between a source and a destination. The system has only receive-side channel state information (CSI), spatially correlated MIMO channels, and the receiver nodes observe spatially correlated noise. The transmit nodes employ orthogonal space-time block codes (OSTBC), whereas the receiver nodes employ optimum minimum mean-square-error (MMSE) detection. The SR protocol, which transmits via the relay only when the direct link between the source and destination is in outage, is compared with the fixed relaying (FR) protocol which always uses the relay. By deriving novel asymptotic expressions of the outage probabilities, it is analytically shown that both protocols provide the same diversity gain. However, the coding gain (CG) of the SR protocol can be much better than that of the FR protocol. In particular, when all MIMO links have the same effective rank, irrespective of its value, the SR protocol provides better CG than the FR scheme if the target information rate is greater than ln2(3) bits per channel use. Simulation results support theoretical analysis and show that the SR scheme can significantly outperform FR method, which may justify the increased complexity due to one-bit feedback requirement in the SR protocol
    corecore