24,524 research outputs found

    Asymptotic properties of robust complex covariance matrix estimates

    Full text link
    In many statistical signal processing applications, the estimation of nuisance parameters and parameters of interest is strongly linked to the resulting performance. Generally, these applications deal with complex data. This paper focuses on covariance matrix estimation problems in non-Gaussian environments and particularly, the M-estimators in the context of elliptical distributions. Firstly, this paper extends to the complex case the results of Tyler in [1]. More precisely, the asymptotic distribution of these estimators as well as the asymptotic distribution of any homogeneous function of degree 0 of the M-estimates are derived. On the other hand, we show the improvement of such results on two applications: DOA (directions of arrival) estimation using the MUSIC (MUltiple SIgnal Classification) algorithm and adaptive radar detection based on the ANMF (Adaptive Normalized Matched Filter) test

    Spatial Sign Correlation

    Get PDF
    A new robust correlation estimator based on the spatial sign covariance matrix (SSCM) is proposed. We derive its asymptotic distribution and influence function at elliptical distributions. Finite sample and robustness properties are studied and compared to other robust correlation estimators by means of numerical simulations.Comment: 20 pages, 7 figures, 2 table

    Performance analysis and optimal selection of large mean-variance portfolios under estimation risk

    Full text link
    We study the consistency of sample mean-variance portfolios of arbitrarily high dimension that are based on Bayesian or shrinkage estimation of the input parameters as well as weighted sampling. In an asymptotic setting where the number of assets remains comparable in magnitude to the sample size, we provide a characterization of the estimation risk by providing deterministic equivalents of the portfolio out-of-sample performance in terms of the underlying investment scenario. The previous estimates represent a means of quantifying the amount of risk underestimation and return overestimation of improved portfolio constructions beyond standard ones. Well-known for the latter, if not corrected, these deviations lead to inaccurate and overly optimistic Sharpe-based investment decisions. Our results are based on recent contributions in the field of random matrix theory. Along with the asymptotic analysis, the analytical framework allows us to find bias corrections improving on the achieved out-of-sample performance of typical portfolio constructions. Some numerical simulations validate our theoretical findings

    Performance Bounds for Parameter Estimation under Misspecified Models: Fundamental findings and applications

    Full text link
    Inferring information from a set of acquired data is the main objective of any signal processing (SP) method. In particular, the common problem of estimating the value of a vector of parameters from a set of noisy measurements is at the core of a plethora of scientific and technological advances in the last decades; for example, wireless communications, radar and sonar, biomedicine, image processing, and seismology, just to name a few. Developing an estimation algorithm often begins by assuming a statistical model for the measured data, i.e. a probability density function (pdf) which if correct, fully characterizes the behaviour of the collected data/measurements. Experience with real data, however, often exposes the limitations of any assumed data model since modelling errors at some level are always present. Consequently, the true data model and the model assumed to derive the estimation algorithm could differ. When this happens, the model is said to be mismatched or misspecified. Therefore, understanding the possible performance loss or regret that an estimation algorithm could experience under model misspecification is of crucial importance for any SP practitioner. Further, understanding the limits on the performance of any estimator subject to model misspecification is of practical interest. Motivated by the widespread and practical need to assess the performance of a mismatched estimator, the goal of this paper is to help to bring attention to the main theoretical findings on estimation theory, and in particular on lower bounds under model misspecification, that have been published in the statistical and econometrical literature in the last fifty years. Secondly, some applications are discussed to illustrate the broad range of areas and problems to which this framework extends, and consequently the numerous opportunities available for SP researchers.Comment: To appear in the IEEE Signal Processing Magazin

    Asymptotic robustness of Kelly's GLRT and Adaptive Matched Filter detector under model misspecification

    Full text link
    A fundamental assumption underling any Hypothesis Testing (HT) problem is that the available data follow the parametric model assumed to derive the test statistic. Nevertheless, a perfect match between the true and the assumed data models cannot be achieved in many practical applications. In all these cases, it is advisable to use a robust decision test, i.e. a test whose statistic preserves (at least asymptotically) the same probability density function (pdf) for a suitable set of possible input data models under the null hypothesis. Building upon the seminal work of Kent (1982), in this paper we investigate the impact of the model mismatch in a recurring HT problem in radar signal processing applications: testing the mean of a set of Complex Elliptically Symmetric (CES) distributed random vectors under a possible misspecified, Gaussian data model. In particular, by using this general misspecified framework, a new look to two popular detectors, the Kelly's Generalized Likelihood Ration Test (GLRT) and the Adaptive Matched Filter (AMF), is provided and their robustness properties investigated.Comment: ISI World Statistics Congress 2017 (ISI2017), Marrakech, Morocco, 16-21 July 201

    The spatial sign covariance matrix and its application for robust correlation estimation

    Get PDF
    8 pages, 2 figures, to be published in the conference proceedings of 11th international conference "Computer Data Analysis & Modeling 2016" http://www.ajs.or.at/index.php/ajs/about/editorialPolicies#openAccessPolicyPeer reviewedPublisher PD

    Convergence and Fluctuations of Regularized Tyler Estimators

    Full text link
    This article studies the behavior of regularized Tyler estimators (RTEs) of scatter matrices. The key advantages of these estimators are twofold. First, they guarantee by construction a good conditioning of the estimate and second, being a derivative of robust Tyler estimators, they inherit their robustness properties, notably their resilience to the presence of outliers. Nevertheless, one major problem that poses the use of RTEs in practice is represented by the question of setting the regularization parameter ρ\rho. While a high value of ρ\rho is likely to push all the eigenvalues away from zero, it comes at the cost of a larger bias with respect to the population covariance matrix. A deep understanding of the statistics of RTEs is essential to come up with appropriate choices for the regularization parameter. This is not an easy task and might be out of reach, unless one considers asymptotic regimes wherein the number of observations nn and/or their size NN increase together. First asymptotic results have recently been obtained under the assumption that NN and nn are large and commensurable. Interestingly, no results concerning the regime of nn going to infinity with NN fixed exist, even though the investigation of this assumption has usually predated the analysis of the most difficult NN and nn large case. This motivates our work. In particular, we prove in the present paper that the RTEs converge to a deterministic matrix when nn\to\infty with NN fixed, which is expressed as a function of the theoretical covariance matrix. We also derive the fluctuations of the RTEs around this deterministic matrix and establish that these fluctuations converge in distribution to a multivariate Gaussian distribution with zero mean and a covariance depending on the population covariance and the parameter ρ\rho
    corecore