343 research outputs found

    Signature Quantization in Fading CDMA With Limited Feedback

    Full text link
    In this work, we analyze the performance of a signature quantization scheme for reverse-link Direct Sequence (DS)- Code Division Multiple Access (CDMA). Assuming perfect estimates of the channel and interference covariance, the receiver selects the signature that minimizes interference power or maximizes signal-to-interference plus noise ratio (SINR) for a desired user from a signature codebook. The codebook index corresponding to the optimal signature is then relayed to the user with a finite number of bits via a feedback channel. Here we are interested in the performance of a Random Vector Quantization (RVQ) codebook, which contains independent isotropically distributed vectors. Assuming arbitrary transmit power allocation, we consider additive white Gaussian noise (AWGN) channel first with no fading and subsequently, with multipath fading. We derive the corresponding SINR in a large system limit at the output of matched filter and linear minimum mean squared error (MMSE) receiver. Numerical examples show that the derived large system results give a good approximation to the performance of finite-size system and that the MMSE receiver achieves close to a single-user performance with only one feedback bit per signature element

    Interference suppression and diversity for CDMA systems

    Get PDF
    In code-division multiple-access (CDMA) systems, due to non-orthogonality of the spreading codes and multipath channels, the desired signal suffers interference from other users. Signal fading due to multipath propagation is another source of impairment in wireless CDMA systems, often severely impacting performance. In this dissertation, reduced-rank minimum mean square error (MMSE) receiver and reduced-rank minimum variance receiver are investigated to suppress interference; transmit diversity is applied to multicarrier CDMA (MC-CDMA) systems to combat fading; packet combing is studied to provide both interference suppression and diversity for CDMA random access systems. The reduced-rank MMSE receiver that uses a reduced-rank estimated covariance matrix is studied to improve the performance of MMSE receiver in CDMA systems. It is shown that the reduced-rank MMSE receiver has much better performance than the full-rank MMSE receiver when the covariance matrix is estimated by using a finite number of data samples and the desired signal is in a low dimensional subspace. It is also demonstrated that the reduced-rank minimum variance receiver outperforms the full-rank minimum variance receiver. The probability density function of the output SNR of the full-rank and reduced-rank linear MMSE estimators is derived for a general linear signal model under the assumption that the signals and noise are Gaussian distributed. Space-time coding that is originally proposed for narrow band systems is applied to an MC-CDMA system in order to get transmit diversity for such a wideband system. Some techniques to jointly decode the space-time code and suppress interference are developed. The channel estimation using either pilot channels or pilot symbols is studied for MC-CDMA systems with space-time coding. Performance of CDMA random access systems with packet combining in fading channels is analyzed. By combining the current retransmitted packet with all its previous transmitted copies, the receiver obtains a diversity gain plus an increased interference and noise suppression gain. Therefore, the bit error rate dramatically decreases with the number of transmissions increasing, which in turn improves the system throughput and reduces the average delay

    Uplink Linear Receivers for Multi-cell Multiuser MIMO with Pilot Contamination: Large System Analysis

    Full text link
    Base stations with a large number of transmit antennas have the potential to serve a large number of users at high rates. However, the receiver processing in the uplink relies on channel estimates which are known to suffer from pilot interference. In this work, making use of the similarity of the uplink received signal in CDMA with that of a multi-cell multi-antenna system, we perform a large system analysis when the receiver employs an MMSE filter with a pilot contaminated estimate. We assume a Rayleigh fading channel with different received powers from users. We find the asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of antennas and number of users per base station grow large while maintaining a fixed ratio. Through the SINR expression we explore the scenario where the number of users being served are comparable to the number of antennas at the base station. The SINR explicitly captures the effect of pilot contamination and is found to be the same as that employing a matched filter with a pilot contaminated estimate. We also find the exact expression for the interference suppression obtained using an MMSE filter which is an important factor when there are significant number of users in the system as compared to the number of antennas. In a typical set up, in terms of the five percentile SINR, the MMSE filter is shown to provide significant gains over matched filtering and is within 5 dB of MMSE filter with perfect channel estimate. Simulation results for achievable rates are close to large system limits for even a 10-antenna base station with 3 or more users per cell.Comment: Accepted for publication in IEEE Transactions on Wireless Communication

    Asynchronous CDMA Systems with Random Spreading-Part I: Fundamental Limits

    Full text link
    Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) for suboptimal receivers, such as the linear minimum mean square error (MMSE) detectors, are derived. The approach is general and optionally allows even for statistics obtained by under-sampling the received signal. All performance measures are given as a function of the chip waveform and the delay distribution of the users in the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms with bandwidth greater than the Nyquist bandwidth, e.g., positive roll-off factors. For example, with the pulse shaping demanded in the UMTS standard, user synchronization reduces spectral efficiency up to 12% at 10 dB normalized signal-to-noise ratio. The benefits of asynchronism stem from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if the users are de-synchronized on the chip-level. The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the user domain and in the frequency domain such that the concept of the effective interference spectral density arises. This generalizes and refines Tse and Hanly's concept of effective interference. In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and guidelines for the design of low complexity multistage detectors with universal weights are provided

    Non-atomic Games for Multi-User Systems

    Get PDF
    In this contribution, the performance of a multi-user system is analyzed in the context of frequency selective fading channels. Using game theoretic tools, a useful framework is provided in order to determine the optimal power allocation when users know only their own channel (while perfect channel state information is assumed at the base station). We consider the realistic case of frequency selective channels for uplink CDMA. This scenario illustrates the case of decentralized schemes, where limited information on the network is available at the terminal. Various receivers are considered, namely the Matched filter, the MMSE filter and the optimum filter. The goal of this paper is to derive simple expressions for the non-cooperative Nash equilibrium as the number of mobiles becomes large and the spreading length increases. To that end two asymptotic methodologies are combined. The first is asymptotic random matrix theory which allows us to obtain explicit expressions of the impact of all other mobiles on any given tagged mobile. The second is the theory of non-atomic games which computes good approximations of the Nash equilibrium as the number of mobiles grows.Comment: 17 pages, 4 figures, submitted to IEEE JSAC Special Issue on ``Game Theory in Communication Systems'

    Large-System Analysis of Joint Channel and Data Estimation for MIMO DS-CDMA Systems

    Full text link
    This paper presents a large-system analysis of the performance of joint channel estimation, multiuser detection, and per-user decoding (CE-MUDD) for randomly-spread multiple-input multiple-output (MIMO) direct-sequence code-division multiple-access (DS-CDMA) systems. A suboptimal receiver based on successive decoding in conjunction with linear minimum mean-squared error (LMMSE) channel estimation is investigated. The replica method, developed in statistical mechanics, is used to evaluate the performance in the large-system limit, where the number of users and the spreading factor tend to infinity while their ratio and the number of transmit and receive antennas are kept constant. The performance of the joint CE-MUDD based on LMMSE channel estimation is compared to the spectral efficiencies of several receivers based on one-shot LMMSE channel estimation, in which the decoded data symbols are not utilized to refine the initial channel estimates. The results imply that the use of joint CE-MUDD significantly reduces rate loss due to transmission of pilot signals, especially for multiple-antenna systems. As a result, joint CE-MUDD can provide significant performance gains, compared to the receivers based on one-shot channel estimation.Comment: The paper was resubmitted to IEEE Trans. Inf. Theor

    Performance Evaluation Of Combined Code-Space Division Multiple Access With Enhanced Parallel Interference Cancellation

    Get PDF
    To meet the ever growing need for wireless networks, several methods were adopted to increase the system capacity of wireless communication systems, such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA), Space Division Multiple Access (SDMA) and Orthogonal Frequency Division Multiplexing (OFDM). In this thesis, Combined Code Division Multiple Access (CDMA) and Space Division Multiple Access (SDMA) system have been investigated for capacity improvement. The analysis considered here is to evaluate the performance of combined Code-Space Division Multiple Access (C-SDMA) system. A single cell composed with one base station (BS) and N classes of users is considered. In heterogeneous environment each user class is supported by one of the different media with specific data rates and minimum required quality of service. In this thesis, the synchronous uplink channel transmission is investigated in order to detect the received signal (bits) in a combined C-SDMA system with perfect power control, with and without interference cancellation. Parallel interference cancellation (PIC) as a suboptimal multiuser detection (MUD) was employed after the matched filter (MF) receiver. The performance of the C-SDMA systems was evaluated in terms of bit error rate (BER) and user capacity, considering all the transmitted bits from other interferer users. Additionally, some asymptotic behaviour of the combined system was analyzed at high and low signal-to-noise and interference ratio (SNIR) for the desired user. Comparison between the pure CDMA and combined C-SDMA systems is done in terms of system performance with and without interference cancellation. By using limited number of available spreading codes, a novel code assignment algorithm is proposed to maintain the maximum orthogonality among users. These codes are stored in a central pool (BS) and maintained as follows. When a new user requests for a channel, the BS first checks the available signatures in terms of codes and Angle of Arrival (AoA); it then assigns the user with an already used code (used by other users) if they are spatially orthogonal to each other, otherwise an available new code will be assigned. If all codes are already utilized then the user will be blocked. Finally, the probability of blocking was evaluated in terms of various numbers of available codes. Matlab was used as the simulation software throughout this thesis. The results obtained showed that the combined C-SDMA system improve the performance by about 4 dB gain over the pure CDMA system at BER of 10-1. On the other hand the system gains 5 dB in the combined C-SDMA system with PIC receiver over the receiver without PIC at BER of 10-4. Hence, it is apparent that the combined C-SDMA system with PIC is able to accommodate more users than the other systems. Finally,the code assignment algorithm is able to further enhance the system capacity by utilizing the same resources compared to the fixed code assignment strategy. In this case, the probability of blocking can be decreased substantially by adding few numbers of additional spreading codes in the system

    On the Performance Gain of NOMA over OMA in Uplink Communication Systems

    Full text link
    In this paper, we investigate and reveal the ergodic sum-rate gain (ESG) of non-orthogonal multiple access (NOMA) over orthogonal multiple access (OMA) in uplink cellular communication systems. A base station equipped with a single-antenna, with multiple antennas, and with massive antenna arrays is considered both in single-cell and multi-cell deployments. In particular, in single-antenna systems, we identify two types of gains brought about by NOMA: 1) a large-scale near-far gain arising from the distance discrepancy between the base station and users; 2) a small-scale fading gain originating from the multipath channel fading. Furthermore, we reveal that the large-scale near-far gain increases with the normalized cell size, while the small-scale fading gain is a constant, given by γ\gamma = 0.57721 nat/s/Hz, in Rayleigh fading channels. When extending single-antenna NOMA to MM-antenna NOMA, we prove that both the large-scale near-far gain and small-scale fading gain achieved by single-antenna NOMA can be increased by a factor of MM for a large number of users. Moreover, given a massive antenna array at the base station and considering a fixed ratio between the number of antennas, MM, and the number of users, KK, the ESG of NOMA over OMA increases linearly with both MM and KK. We then further extend the analysis to a multi-cell scenario. Compared to the single-cell case, the ESG in multi-cell systems degrades as NOMA faces more severe inter-cell interference due to the non-orthogonal transmissions. Besides, we unveil that a large cell size is always beneficial to the ergodic sum-rate performance of NOMA in both single-cell and multi-cell systems. Numerical results verify the accuracy of the analytical results derived and confirm the insights revealed about the ESG of NOMA over OMA in different scenarios.Comment: 51 pages, 7 figures, invited paper, submitted to IEEE Transactions on Communication
    corecore