755 research outputs found

    Asymptotic Performance Analysis of a K-Hop Amplify-and-Forward Relay MIMO Channel

    Get PDF
    The present paper studies the asymptotic performance of multi-hop amplify-and-forward relay multiple-antenna communication channels. Each multi-antenna terminal in the network amplifies the received signal, sent by a source, and retransmits it upstream towards a destination. Achievable ergodic rates under both jointly optimal detection and decoding and practical separate decoding schemes for arbitrary signaling schemes, along with the average bit error rate for various receiver structures are derived in the regime where the number of antennas at each terminal grows large without a bound. To overcome the difficulty of averaging over channel realizations we apply large-system analysis based on the replica method from statistical physics. The validity of the large-system analysis is further verified through Monte Carlo simulations of realistic finite-sized systems

    Performance Analysis of Optimal Single Stream Beamforming in MIMO Dual-Hop AF Systems

    Full text link
    This paper investigates the performance of optimal single stream beamforming schemes in multiple-input multiple-output (MIMO) dual-hop amplify-and-forward (AF) systems. Assuming channel state information is not available at the source and relay, the optimal transmit and receive beamforming vectors are computed at the destination, and the transmit beamforming vector is sent to the transmitter via a dedicated feedback link. Then, a set of new closed-form expressions for the statistical properties of the maximum eigenvalue of the resultant channel is derived, i.e., the cumulative density function (cdf), probability density function (pdf) and general moments, as well as the first order asymptotic expansion and asymptotic large dimension approximations. These analytical expressions are then applied to study three important performance metrics of the system, i.e., outage probability, average symbol error rate and ergodic capacity. In addition, more detailed treatments are provided for some important special cases, e.g., when the number of antennas at one of the nodes is one or large, simple and insightful expressions for the key parameters such as diversity order and array gain of the system are derived. With the analytical results, the joint impact of source, relay and destination antenna numbers on the system performance is addressed, and the performance of optimal beamforming schemes and orthogonal space-time block-coding (OSTBC) schemes are compared. Results reveal that the number of antennas at the relay has a great impact on how the numbers of antennas at the source and destination contribute to the system performance, and optimal beamforming not only achieves the same maximum diversity order as OSTBC, but also provides significant power gains over OSTBC.Comment: to appear in IEEE Journal on Selected Areas in Communications special issue on Theories and Methods for Advanced Wireless Relay

    Performance Analysis of Project-and-Forward Relaying in Mixed MIMO-Pinhole and Rayleigh Dual-Hop Channel

    Full text link
    In this letter, we present an end-to-end performance analysis of dual-hop project-and-forward relaying in a realistic scenario, where the source-relay and the relay-destination links are experiencing MIMO-pinhole and Rayleigh channel conditions, respectively. We derive the probability density function of both the relay post-processing and the end-to-end signal-to-noise ratios, and the obtained expressions are used to derive the outage probability of the analyzed system as well as its end-to-end ergodic capacity in terms of generalized functions. Applying then the residue theory to Mellin-Barnes integrals, we infer the system asymptotic behavior for different channel parameters. As the bivariate Meijer-G function is involved in the analysis, we propose a new and fast MATLAB implementation enabling an automated definition of the complex integration contour. Extensive Monte-Carlo simulations are invoked to corroborate the analytical results.Comment: 4 pages, IEEE Communications Letters, 201

    Ergodic Capacity Analysis of Amplify-and-Forward MIMO Dual-Hop Systems

    Full text link
    This paper presents an analytical characterization of the ergodic capacity of amplify-and-forward (AF) MIMO dual-hop relay channels, assuming that the channel state information is available at the destination terminal only. In contrast to prior results, our expressions apply for arbitrary numbers of antennas and arbitrary relay configurations. We derive an expression for the exact ergodic capacity, simplified closed-form expressions for the high SNR regime, and tight closed-form upper and lower bounds. These results are made possible to employing recent tools from finite-dimensional random matrix theory to derive new closed-form expressions for various statistical properties of the equivalent AF MIMO dual-hop relay channel, such as the distribution of an unordered eigenvalue and certain random determinant properties. Based on the analytical capacity expressions, we investigate the impact of the system and channel characteristics, such as the antenna configuration and the relay power gain. We also demonstrate a number of interesting relationships between the dual-hop AF MIMO relay channel and conventional point-to-point MIMO channels in various asymptotic regimes.Comment: 40 pages, 9 figures, Submitted to to IEEE Transactions on Information Theor

    Impact of Transceiver Impairments on the Capacity of Dual-Hop Relay Massive MIMO Systems

    Get PDF
    Despite the deleterious effect of hardware impairments on communication systems, most prior works have not investigated their impact on widely used relay systems. Most importantly, the application of inexpensive transceivers, being prone to hardware impairments, is the most cost-efficient way for the implementation of massive multiple-input multiple-output (MIMO) systems. Consequently, the direction of this paper is towards the investigation of the impact of hardware impairments on MIMO relay networks with large number of antennas. Specifically, we obtain the general expression for the ergodic capacity of dual-hop (DH) amplify-and-forward (AF) relay systems. Next, given the advantages of the free probability (FP) theory with comparison to other known techniques in the area of large random matrix theory, we pursue a large limit analysis in terms of number of antennas and users by shedding light to the behavior of relay systems inflicted by hardware impairments.Comment: 6 pages, 4 figures, accepted in IEEE Global Communications Conference (GLOBECOM 2015) - Workshop on Massive MIMO: From theory to practice, 201

    Iterative Deterministic Equivalents for the Performance Analysis of Communication Systems

    Full text link
    In this article, we introduce iterative deterministic equivalents as a novel technique for the performance analysis of communication systems whose channels are modeled by complex combinations of independent random matrices. This technique extends the deterministic equivalent approach for the study of functionals of large random matrices to a broader class of random matrix models which naturally arise as channel models in wireless communications. We present two specific applications: First, we consider a multi-hop amplify-and-forward (AF) MIMO relay channel with noise at each stage and derive deterministic approximations of the mutual information after the Kth hop. Second, we study a MIMO multiple access channel (MAC) where the channel between each transmitter and the receiver is represented by the double-scattering channel model. We provide deterministic approximations of the mutual information, the signal-to-interference-plus-noise ratio (SINR) and sum-rate with minimum-mean-square-error (MMSE) detection and derive the asymptotically optimal precoding matrices. In both scenarios, the approximations can be computed by simple and provably converging fixed-point algorithms and are shown to be almost surely tight in the limit when the number of antennas at each node grows infinitely large. Simulations suggest that the approximations are accurate for realistic system dimensions. The technique of iterative deterministic equivalents can be easily extended to other channel models of interest and is, therefore, also a new contribution to the field of random matrix theory.Comment: submitted to the IEEE Transactions on Information Theory, 43 pages, 4 figure
    • …
    corecore