334 research outputs found

    Asymptotic improvement of the Gilbert-Varshamov bound for linear codes

    Full text link
    The Gilbert-Varshamov bound states that the maximum size A_2(n,d) of a binary code of length n and minimum distance d satisfies A_2(n,d) >= 2^n/V(n,d-1) where V(n,d) stands for the volume of a Hamming ball of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound can be improved to A_2(n,d) >= cn2^n/V(n,d-1) for c a constant and d/n <= 0.499. In this paper we show that certain asymptotic families of linear binary [n,n/2] random double circulant codes satisfy the same improved Gilbert-Varshamov bound.Comment: Submitted to IEEE Transactions on Information Theor

    Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes

    Full text link
    Given positive integers nn and dd, let A2(n,d)A_2(n,d) denote the maximum size of a binary code of length nn and minimum distance dd. The well-known Gilbert-Varshamov bound asserts that A2(n,d)2n/V(n,d1)A_2(n,d) \geq 2^n/V(n,d-1), where V(n,d)=i=0d(ni)V(n,d) = \sum_{i=0}^{d} {n \choose i} is the volume of a Hamming sphere of radius dd. We show that, in fact, there exists a positive constant cc such that A2(n,d)c2nV(n,d1)log2V(n,d1) A_2(n,d) \geq c \frac{2^n}{V(n,d-1)} \log_2 V(n,d-1) whenever d/n0.499d/n \le 0.499. The result follows by recasting the Gilbert- Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.Comment: 10 pages, 3 figures; to appear in the IEEE Transactions on Information Theory, submitted August 12, 2003, revised March 28, 200

    Transitive and self-dual codes attaining the Tsfasman-Vladut-Zink bound

    Get PDF
    A major problem in coding theory is the question of whether the class of cyclic codes is asymptotically good. In this correspondence-as a generalization of cyclic codes-the notion of transitive codes is introduced (see Definition 1.4 in Section I), and it is shown that the class of transitive codes is asymptotically good. Even more, transitive codes attain the Tsfasman-Vladut-Zink bound over F-q, for all squares q = l(2). It is also shown that self-orthogonal and self-dual codes attain the Tsfasman-Vladut-Zink bound, thus improving previous results about self-dual codes attaining the Gilbert-Varshamov bound. The main tool is a new asymptotically optimal tower E-0 subset of E-1 subset of E-2 subset of center dot center dot center dot of function fields over F-q (with q = l(2)), where all extensions E-n/E-0 are Galois

    On kissing numbers and spherical codes in high dimensions

    Get PDF
    We prove a lower bound of Ω(d3/2(2/3)d)\Omega (d^{3/2} \cdot (2/\sqrt{3})^d) on the kissing number in dimension dd. This improves the classical lower bound of Chabauty, Shannon, and Wyner by a linear factor in the dimension. We obtain a similar linear factor improvement to the best known lower bound on the maximal size of a spherical code of acute angle θ\theta in high dimensions
    corecore