5 research outputs found

    On a Multiple-Access in a Vector Disjunctive Channel

    Full text link
    We address the problem of increasing the sum rate in a multiple-access system from [1] for small number of users. We suggest an improved signal-code construction in which in case of a small number of users we give more resources to them. For the resulting multiple-access system a lower bound on the relative sum rate is derived. It is shown to be very close to the maximal value of relative sum rate in [1] even for small number of users. The bound is obtained for the case of decoding by exhaustive search. We also suggest reduced-complexity decoding and compare the maximal number of users in this case and in case of decoding by exhaustive search.Comment: 5 pages, 4 figures, submitted to IEEE ISIT 201

    Part I:

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Asymptotic Gilbert-Varshamov bound on frequency hopping sequences

    No full text
    Given a {q} -ary frequency hopping sequence set of length {n} and size {M} with Hamming correlation {H}, one can obtain a {q} -ary (nonlinear) cyclic code of length {n} and size nM with Hamming distance n-H. Thus, every upper bound on the size of a code from coding theory gives an upper bound on the size of a frequency hopping sequence set. Indeed, all upper bounds from coding theory have been converted to upper bounds on frequency hopping sequence sets [1]. On the other hand, a lower bound from coding theory does not automatically produce a lower bound for frequency hopping sequence sets. In particular, the most important lower bound, the Gilbert-Varshamov bound in coding theory, has not been transformed to a valid lower bound on frequency hopping sequence sets. The purpose of this paper is to transform the Gilbert-Varshamov bound from coding theory to frequency hopping sequence sets by establishing a connection between a special family of cyclic codes (which are called hopping cyclic codes in this paper) and frequency hopping sequence sets. We provide two proofs of the Gilbert-Varshamov bound. One is based on a probabilistic method that requires advanced tool-martingale. This proof covers the whole rate region. Another proof is purely elementary but only covers part of the rate region
    corecore