445 research outputs found

    Additive energy forward curves in a Heath-Jarrow-Morton framework

    Get PDF
    One of the peculiarities of power and gas markets is the delivery mechanism of forward contracts. The seller of a futures contract commits to deliver, say, power, over a certain period, while the classical forward is a financial agreement settled on a maturity date. Our purpose is to design a Heath-Jarrow-Morton framework for an additive, mean-reverting, multicommodity market consisting of forward contracts of any delivery period. The main assumption is that forward prices can be represented as affine functions of a universal source of randomness. This allows us to completely characterize the models which prevent arbitrage opportunities: this boils down to finding a density between a risk-neutral measure Q\mathbb{Q}, such that the prices of traded assets like forward contracts are true Q\mathbb{Q}-martingales, and the real world probability measure P\mathbb{P}, under which forward prices are mean-reverting. The Girsanov kernel for such a transformation turns out to be stochastic and unbounded in the diffusion part, while in the jump part the Girsanov kernel must be deterministic and bounded: thus, in this respect, we prove two results on the martingale property of stochastic exponentials. The first allows to validate measure changes made of two components: an Esscher-type density and a Girsanov transform with stochastic and unbounded kernel. The second uses a different approach and works for the case of continuous density. We apply this framework to two models: a generalized Lucia-Schwartz model and a cross-commodity cointegrated market.Comment: 28 page

    COMPARING THE PERFORMANCES OF THE PARTIAL EQUILIBRIUM AND TIME-SERIES APPROACHES TO HEDGING

    Get PDF
    This research compares partial equilibrium and statistical time-series approaches to hedging. The finance literature stresses the former approach, while the applied economics literature has focused on the latter. We compare the out-of-sample hedging effectiveness of the two approaches when hedging commodity price risk using a simple derivative with a linear payoff function (a futures contract). For various methods of parameter estimation and inference, we find that the partial equilibrium models cannot out-perform the time series model. The partial equilibrium models unpalatable assumptions of deterministically evolving futures volatility seems to impede their hedging effectiveness, even when potentially foresighted option-implied volatility term structures are employed.Marketing,

    Mean reversion in stock index futures markets: a nonlinear analysis

    Get PDF
    Several stylized theoretical models of futures basis behavior under nonzero transactions costs predict nonlinear mean reversion of the futures basis towards its equilibrium value. Nonlinearly mean-reverting models are employed to characterize the basis of the SandP 500 and the FTSE 100 indices over the post-1987 crash period, capturing empirically these theoretical predictions and examining the view that the degree of mean reversion in the basis is a function of the size of the deviation from equilibrium. The estimated half lives of basis shocks, obtained using Monte Carlo integration methods, suggest that for smaller shocks to the basis level the basis displays substantial persistence, while for larger shocks the basis exhibits highly nonlinear mean reversion towards its equilibrium value. Ā© 2002 Wiley Periodicals, Inc

    Mean-Reverting Stochastic Processes, Evaluation of Forward Prices and Interest Rates

    Get PDF
    We consider mean-reverting stochastic processes and build self-consistent models for forward price dynamics and some applications in power industries. These models are built using the ideas and equations of stochastic differential geometry in order to close the system of equations for the forward prices and their volatility. Some analytical solutions are presented in the one factor case and for specific regular forward price/interest rates volatility. Those models will also play a role of initial conditions for a stochastic process describing forward price and interest rates volatility. Subsequently, the curved manifold of the internal space i.e. a discrete version of the bond term space (the space of bond maturing) is constructed. The dynamics of the point of this internal space that correspond to a portfolio of different bonds is studied. The analysis of the discount bond forward rate dynamics, for which we employed the Stratonovich approach, permitted us to calculate analytically the regular and the stochastic volatilities. We compare our results with those known from the literature.: Stochastic Differential Geometry, Mean-Reverting Stochastic Processes and Term Structure of Specific (Some) Economic/Finance Instruments

    Pricing swing options and other electricity derivatives

    Get PDF
    The deregulation of regional electricity markets has led to more competitive prices but also higher uncertainty in the future electricity price development. Most markets exhibit high volatilities and occasional distinctive price spikes, which results in demand for derivative products which protect the holder against high prices. A good understanding of the stochastic price dynamics is required for the purposes of risk management and pricing derivatives. In this thesis we examine a simple spot price model which is the exponential of the sum of an Ornstein-Uhlenbeck and an independent pure jump process. We derive the moment generating function as well as various approximations to the probability density function of the logarithm of this spot price process at maturity T. With some restrictions on the set of possible martingale measures we show that the risk neutral dynamics remains within the class of considered models and hence we are able to calibrate the model to the observed forward curve and present semi-analytic formulas for premia of path-independent options as well as approximations to call and put options on forward contracts with and without a delivery period. In order to price path-dependent options with multiple exercise rights like swing contracts a grid method is utilised which in turn uses approximations to the conditional density of the spot process. Further contributions of this thesis include a short discussion of interpolation methods to generate a continuous forward curve based on the forward contracts with delivery periods observed in the market, and an investigation into optimal martingale measures in incomplete markets. In particular we present known results of q-optimal martingale measures in the setting of a stochastic volatility model and give a first indication of how to determine the q-optimal measure for q=0 in an exponential Ornstein-Uhlenbeck model consistent with a given forward curve

    Linear and nonlinear filtering in mathematical finance: a review

    Get PDF
    Copyright @ The Authors 2010This paper presents a review of time series filtering and its applications in mathematical finance. A summary of results of recent empirical studies with market data are presented for yield curve modelling and stochastic volatility modelling. The paper also outlines different approaches to filtering of nonlinear time series
    • ā€¦
    corecore