172 research outputs found

    Forbidden Subgraphs in Connected Graphs

    Get PDF
    Given a set ξ={H1,H2,...}\xi=\{H_1,H_2,...\} of connected non acyclic graphs, a ξ\xi-free graph is one which does not contain any member of % \xi as copy. Define the excess of a graph as the difference between its number of edges and its number of vertices. Let {\gr{W}}_{k,\xi} be theexponential generating function (EGF for brief) of connected ξ\xi-free graphs of excess equal to kk (k≥1k \geq 1). For each fixed ξ\xi, a fundamental differential recurrence satisfied by the EGFs {\gr{W}}_{k,\xi} is derived. We give methods on how to solve this nonlinear recurrence for the first few values of kk by means of graph surgery. We also show that for any finite collection ξ\xi of non-acyclic graphs, the EGFs {\gr{W}}_{k,\xi} are always rational functions of the generating function, TT, of Cayley's rooted (non-planar) labelled trees. From this, we prove that almost all connected graphs with nn nodes and n+kn+k edges are ξ\xi-free, whenever k=o(n1/3)k=o(n^{1/3}) and ∣ξ∣<∞|\xi| < \infty by means of Wright's inequalities and saddle point method. Limiting distributions are derived for sparse connected ξ\xi-free components that are present when a random graph on nn nodes has approximately n2\frac{n}{2} edges. In particular, the probability distribution that it consists of trees, unicyclic components, ......, (q+1)(q+1)-cyclic components all ξ\xi-free is derived. Similar results are also obtained for multigraphs, which are graphs where self-loops and multiple-edges are allowed

    Properties of Random Graphs with Hidden Color

    Full text link
    We investigate in some detail a recently suggested general class of ensembles of sparse undirected random graphs based on a hidden stub-coloring, with or without the restriction to nondegenerate graphs. The calculability of local and global structural properties of graphs from the resulting ensembles is demonstrated. Cluster size statistics are derived with generating function techniques, yielding a well-defined percolation threshold. Explicit rules are derived for the enumeration of small subgraphs. Duality and redundancy is discussed, and subclasses corresponding to commonly studied models are identified.Comment: 14 pages, LaTeX, no figure

    Automatic enumeration of regular objects

    Full text link
    We describe a framework for systematic enumeration of families combinatorial structures which possess a certain regularity. More precisely, we describe how to obtain the differential equations satisfied by their generating series. These differential equations are then used to determine the initial counting sequence and for asymptotic analysis. The key tool is the scalar product for symmetric functions and that this operation preserves D-finiteness.Comment: Corrected for readability; To appear in the Journal of Integer Sequence

    Percolation on sparse random graphs with given degree sequence

    Full text link
    We study the two most common types of percolation process on a sparse random graph with a given degree sequence. Namely, we examine first a bond percolation process where the edges of the graph are retained with probability p and afterwards we focus on site percolation where the vertices are retained with probability p. We establish critical values for p above which a giant component emerges in both cases. Moreover, we show that in fact these coincide. As a special case, our results apply to power law random graphs. We obtain rigorous proofs for formulas derived by several physicists for such graphs.Comment: 20 page
    • …
    corecore