361 research outputs found

    On convergence of solutions of fractal Burgers equation toward rarefaction waves

    Full text link
    In the paper, the large time behavior of solutions of the Cauchy problem for the one dimensional fractal Burgers equation ut+(βˆ’βˆ‚x2)Ξ±/2u+uux=0u_t+(-\partial^2_x)^{\alpha/2} u+uu_x=0 with α∈(1,2)\alpha\in (1,2) is studied. It is shown that if the nondecreasing initial datum approaches the constant states uΒ±u_\pm (uβˆ’<u+u_-<u_+) as xβ†’Β±βˆžx\to \pm\infty, respectively, then the corresponding solution converges toward the rarefaction wave, {\it i.e.} the unique entropy solution of the Riemann problem for the nonviscous Burgers equation.Comment: 15 page

    Asymptotic stability of traveling wave solutions for nonlocal viscous conservation laws with explicit decay rates

    Get PDF
    We consider scalar conservation laws with nonlocal diffusion of Riesz-Feller type such as the fractal Burgers equation. The existence of traveling wave solutions with monotone decreasing profile has been established recently (in special cases). We show the local asymptotic stability of these traveling wave solutions in a Sobolev space setting by constructing a Lyapunov functional. Most importantly, we derive the algebraic-in-time decay of the norm of such perturbations with explicit algebraic-in-time decay rates

    Large-time Behavior of Solutions to the Inflow Problem of Full Compressible Navier-Stokes Equations

    Full text link
    Large-time behavior of solutions to the inflow problem of full compressible Navier-Stokes equations is investigated on the half line R+=(0,+∞)R^+ =(0,+\infty). The wave structure which contains four waves: the transonic(or degenerate) boundary layer solution, 1-rarefaction wave, viscous 2-contact wave and 3-rarefaction wave to the inflow problem is described and the asymptotic stability of the superposition of the above four wave patterns to the inflow problem of full compressible Navier-Stokes equations is proven under some smallness conditions. The proof is given by the elementary energy analysis based on the underlying wave structure. The main points in the proof are the degeneracies of the transonic boundary layer solution and the wave interactions in the superposition wave.Comment: 27 page

    Large-time Behavior of Solutions to the Inflow Problem of Full Compressible Navier-Stokes Equations

    Full text link
    Large-time behavior of solutions to the inflow problem of full compressible Navier-Stokes equations is investigated on the half line R+=(0,+∞)R^+ =(0,+\infty). The wave structure which contains four waves: the transonic(or degenerate) boundary layer solution, 1-rarefaction wave, viscous 2-contact wave and 3-rarefaction wave to the inflow problem is described and the asymptotic stability of the superposition of the above four wave patterns to the inflow problem of full compressible Navier-Stokes equations is proven under some smallness conditions. The proof is given by the elementary energy analysis based on the underlying wave structure. The main points in the proof are the degeneracies of the transonic boundary layer solution and the wave interactions in the superposition wave.Comment: 27 page
    • …
    corecore