207 research outputs found

    Public key cryptosystems : theory, application and implementation

    Get PDF
    The determination of an individual's right to privacy is mainly a nontechnical matter, but the pragmatics of providing it is the central concern of the cryptographer. This thesis has sought answers to some of the outstanding issues in cryptography. In particular, some of the theoretical, application and implementation problems associated with a Public Key Cryptosystem (PKC).The Trapdoor Knapsack (TK) PKC is capable of fast throughput, but suffers from serious disadvantages. In chapter two a more general approach to the TK-PKC is described, showing how the public key size can be significantly reduced. To overcome the security limitations a new trapdoor was described in chapter three. It is based on transformations between the radix and residue number systems.Chapter four considers how cryptography can best be applied to multi-addressed packets of information. We show how security or communication network structure can be used to advantage, then proposing a new broadcast cryptosystem, which is more generally applicable.Copyright is traditionally used to protect the publisher from the pirate. Chapter five shows how to protect information when in easily copyable digital format.Chapter six describes the potential and pitfalls of VLSI, followed in chapter seven by a model for comparing the cost and performance of VLSI architectures. Chapter eight deals with novel architectures for all the basic arithmetic operations. These architectures provide a basic vocabulary of low complexity VLSI arithmetic structures for a wide range of applications.The design of a VLSI device, the Advanced Cipher Processor (ACP), to implement the RSA algorithm is described in chapter nine. It's heart is the modular exponential unit, which is a synthesis of the architectures in chapter eight. The ACP is capable of a throughput of 50 000 bits per second

    Quantum Simulation for High Energy Physics

    Full text link
    It is for the first time that Quantum Simulation for High Energy Physics (HEP) is studied in the U.S. decadal particle-physics community planning, and in fact until recently, this was not considered a mainstream topic in the community. This fact speaks of a remarkable rate of growth of this subfield over the past few years, stimulated by the impressive advancements in Quantum Information Sciences (QIS) and associated technologies over the past decade, and the significant investment in this area by the government and private sectors in the U.S. and other countries. High-energy physicists have quickly identified problems of importance to our understanding of nature at the most fundamental level, from tiniest distances to cosmological extents, that are intractable with classical computers but may benefit from quantum advantage. They have initiated, and continue to carry out, a vigorous program in theory, algorithm, and hardware co-design for simulations of relevance to the HEP mission. This community whitepaper is an attempt to bring this exciting and yet challenging area of research to the spotlight, and to elaborate on what the promises, requirements, challenges, and potential solutions are over the next decade and beyond.Comment: This is a whitepaper prepared for the topical groups CompF6 (Quantum computing), TF05 (Lattice Gauge Theory), and TF10 (Quantum Information Science) within the Computational Frontier and Theory Frontier of the U.S. Community Study on the Future of Particle Physics (Snowmass 2021). 103 pages and 1 figur

    Matrix Transform Imager Architecture for On-Chip Low-Power Image Processing

    Get PDF
    Camera-on-a-chip systems have tried to include carefully chosen signal processing units for better functionality, performance and also to broaden the applications they can be used for. Image processing sensors have been possible due advances in CMOS active pixel sensors (APS) and neuromorphic focal plane imagers. Some of the advantages of these systems are compact size, high speed and parallelism, low power dissipation, and dense system integration. One can envision using these chips for portable and inexpensive video cameras on hand-held devices like personal digital assistants (PDA) or cell-phones In neuromorphic modeling of the retina it would be very nice to have processing capabilities at the focal plane while retaining the density of typical APS imager designs. Unfortunately, these two goals have been mostly incompatible. We introduce our MAtrix Transform Imager Architecture (MATIA) that uses analog floating--gate devices to make it possible to have computational imagers with high pixel densities. The core imager performs computations at the pixel plane, but still has a fill-factor of 46 percent - comparable to the high fill-factors of APS imagers. The processing is performed continuously on the image via programmable matrix operations that can operate on the entire image or blocks within the image. The resulting data-flow architecture can directly perform all kinds of block matrix image transforms. Since the imager operates in the subthreshold region and thus has low power consumption, this architecture can be used as a low-power front end for any system that utilizes these computations. Various compression algorithms (e.g. JPEG), that use block matrix transforms, can be implemented using this architecture. Since MATIA can be used for gradient computations, cheap image tracking devices can be implemented using this architecture. Other applications of this architecture can range from stand-alone universal transform imager systems to systems that can compute stereoscopic depth.Ph.D.Committee Chair: Hasler, Paul; Committee Member: David Anderson; Committee Member: DeWeerth, Steve; Committee Member: Jackson, Joel; Committee Member: Smith, Mar

    Multicarrier Faster-than-Nyquist Signaling Transceivers: From Theory to Practice

    Get PDF
    The demand for spectrum resources in cellular systems worldwide has seen a tremendous escalation in the recent past. The mobile phones of today are capable of being cameras taking pictures and videos, able to browse the Internet, do video calling and much more than an yesteryear computer. Due to the variety and the amount of information that is being transmitted the demand for spectrum resources is continuously increasing. Efficient use of bandwidth resources has hence become a key parameter in the design and realization of wireless communication systems. Faster-than-Nyquist (FTN) signaling is one such technique that achieves bandwidth efficiency by making better use of the available spectrum resources at the expense of higher processing complexity in the transceiver. This thesis addresses the challenges and design trade offs arising during the hardware realization of Faster-than-Nyquist signaling transceivers. The FTN system has been evaluated for its achievable performance compared to the processing overhead in the transmitter and the receiver. Coexistence with OFDM systems, a more popular multicarrier scheme in existing and upcoming wireless standards, has been considered by designing FTN specific processing blocks as add-ons to the conventional transceiver chain. A multicarrier system capable of operating under both orthogonal and FTN signaling has been developed. The performance of the receiver was evaluated for AWGN and fading channels. The FTN system was able to achieve 2x improvement in bandwidth usage with similar performance as that of an OFDM system. The extra processing in the receiver was in terms of an iterative decoder for the decoding of FTN modulated signals. An efficient hardware architecture for the iterative decoder reusing the FTN specific processing blocks and realize different functionality has been designed. An ASIC implementation of this decoder was implemented in a 65nm CMOS technology and the implemented chip has been successfully verified for its functionality
    • …
    corecore