2,288 research outputs found

    Quantum network communication -- the butterfly and beyond

    Full text link
    We study the k-pair communication problem for quantum information in networks of quantum channels. We consider the asymptotic rates of high fidelity quantum communication between specific sender-receiver pairs. Four scenarios of classical communication assistance (none, forward, backward, and two-way) are considered. (i) We obtain outer and inner bounds of the achievable rate regions in the most general directed networks. (ii) For two particular networks (including the butterfly network) routing is proved optimal, and the free assisting classical communication can at best be used to modify the directions of quantum channels in the network. Consequently, the achievable rate regions are given by counting edge avoiding paths, and precise achievable rate regions in all four assisting scenarios can be obtained. (iii) Optimality of routing can also be proved in classes of networks. The first class consists of directed unassisted networks in which (1) the receivers are information sinks, (2) the maximum distance from senders to receivers is small, and (3) a certain type of 4-cycles are absent, but without further constraints (such as on the number of communicating and intermediate parties). The second class consists of arbitrary backward-assisted networks with 2 sender-receiver pairs. (iv) Beyond the k-pair communication problem, observations are made on quantum multicasting and a static version of network communication related to the entanglement of assistance.Comment: 15 pages, 17 figures. Final versio

    Nonlinear Markov Processes in Big Networks

    Full text link
    Big networks express various large-scale networks in many practical areas such as computer networks, internet of things, cloud computation, manufacturing systems, transportation networks, and healthcare systems. This paper analyzes such big networks, and applies the mean-field theory and the nonlinear Markov processes to set up a broad class of nonlinear continuous-time block-structured Markov processes, which can be applied to deal with many practical stochastic systems. Firstly, a nonlinear Markov process is derived from a large number of interacting big networks with symmetric interactions, each of which is described as a continuous-time block-structured Markov process. Secondly, some effective algorithms are given for computing the fixed points of the nonlinear Markov process by means of the UL-type RG-factorization. Finally, the Birkhoff center, the Lyapunov functions and the relative entropy are used to analyze stability or metastability of the big network, and several interesting open problems are proposed with detailed interpretation. We believe that the results given in this paper can be useful and effective in the study of big networks.Comment: 28 pages in Special Matrices; 201

    Entropy Rate of Diffusion Processes on Complex Networks

    Full text link
    The concept of entropy rate for a dynamical process on a graph is introduced. We study diffusion processes where the node degrees are used as a local information by the random walkers. We describe analitically and numerically how the degree heterogeneity and correlations affect the diffusion entropy rate. In addition, the entropy rate is used to characterize complex networks from the real world. Our results point out how to design optimal diffusion processes that maximize the entropy for a given network structure, providing a new theoretical tool with applications to social, technological and communication networks.Comment: 4 pages (APS format), 3 figures, 1 tabl
    corecore