384 research outputs found

    Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations

    Full text link
    In this paper we consider a dd-dimensional (d=1,2d=1,2) parabolic-elliptic Keller-Segel equation with a logistic forcing and a fractional diffusion of order α∈(0,2)\alpha \in (0,2). We prove uniform in time boundedness of its solution in the supercritical range α>d(1−c)\alpha>d\left(1-c\right), where cc is an explicit constant depending on parameters of our problem. Furthermore, we establish sufficient conditions for ∥u(t)−u∞∥L∞→0\|u(t)-u_\infty\|_{L^\infty}\rightarrow0, where u∞≡1u_\infty\equiv 1 is the only nontrivial homogeneous solution. Finally, we provide a uniqueness result

    Selected topics on reaction-diffusion-advection models from spatial ecology

    Full text link
    We discuss the effects of movement and spatial heterogeneity on population dynamics via reaction-diffusion-advection models, focusing on the persistence, competition, and evolution of organisms in spatially heterogeneous environments. Topics include Lokta-Volterra competition models, river models, evolution of biased movement, phytoplankton growth, and spatial spread of epidemic disease. Open problems and conjectures are presented

    Global solutions for a supercritical drift-diffusion equation

    Full text link
    We study the global existence of solutions to a one-dimensional drift-diffusion equation with logistic term, generalizing the classical parabolic-elliptic Keller-Segel aggregation equation arising in mathematical biology. In particular, we prove that there exists a global weak solution, if the order of the fractional diffusion α∈(1−c1,2]\alpha \in (1-c_1, 2], where c1>0c_1>0 is an explicit constant depending on the physical parameters present in the problem (chemosensitivity and strength of logistic damping). Furthermore, in the range 1−c2<α≤21-c_2<\alpha\leq 2 with 0<c2<c10<c_2<c_1, the solution is globally smooth. Let us emphasize that when α<1\alpha<1, the diffusion is in the supercritical regime

    All functions are (locally) ss-harmonic (up to a small error) - and applications

    Full text link
    The classical and the fractional Laplacians exhibit a number of similarities, but also some rather striking, and sometimes surprising, structural differences. A quite important example of these differences is that any function (regardless of its shape) can be locally approximated by functions with locally vanishing fractional Laplacian, as it was recently proved by Serena Dipierro, Ovidiu Savin and myself. This informal note is an exposition of this result and of some of its consequences
    • …
    corecore