88 research outputs found

    Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity

    Get PDF
    The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg--Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and Îș\kappa, the Ginzburg--Landau parameter. The secondary bifurcation in which the asymmetric solution branches reconnect with the symmetric solution branch is studied for values of (Îș,d)(\kappa,d) for which it is close to the primary bifurcation from the normal state. These values of (Îș,d)(\kappa,d) form a curve in the Îșd\kappa d-plane, which is determined. At one point on this curve, called the quintuple point, the primary bifurcations switch from being subcritical to supercritical, requiring a separate analysis. The results answer some of the conjectures of [A. Aftalion and W. C. Troy, Phys. D, 132 (1999), pp. 214--232]

    The bifurcation diagrams for the Ginzburg-Landau system for superconductivity

    Full text link
    In this paper, we provide the different types of bifurcation diagrams for a superconducting cylinder placed in a magnetic field along the direction of the axis of the cylinder. The computation is based on the numerical solutions of the Ginzburg-Landau model by the finite element method. The response of the material depends on the values of the exterior field, the Ginzburg-Landau parameter and the size of the domain. The solution branches in the different regions of the bifurcation diagrams are analyzed and open mathematical problems are mentioned.Comment: 16 page

    Coexistence of nontrivial solutions of the one-dimensional Ginzburg-Landau equation : a computer-assisted proof

    Get PDF
    In this paper, Chebyshev series and rigorous numerics are combined to compute solutions of the Euler-Lagrange equations for the one-dimensional Ginzburg-Landau model of superconductivity. The idea is to recast solutions as fixed points of a Newton-like operator defined on a Banach space of rapidly decaying Chebyshev coefficients. Analytic estimates, the radii polynomials and the contraction mapping theorem are combined to show existence of solutions near numerical approximations. Coexistence of as many as seven nontrivial solutions is proved

    Numerical bifurcation study of superconducting patterns on a square

    Full text link
    This paper considers the extreme type-II Ginzburg-Landau equations that model vortex patterns in superconductors. The nonlinear PDEs are solved using Newton's method, and properties of the Jacobian operator are highlighted. Specifically, it is illustrated how the operator can be regularized using an appropriate phase condition. For a two-dimensional square sample, the numerical results are based on a finite-difference discretization with link variables that preserves the gauge invariance. For two exemplary sample sizes, a thorough bifurcation analysis is performed using the strength of the applied magnetic field as a bifurcation parameter and focusing on the symmetries of this system. The analysis gives new insight in the transitions between stable and unstable states, as well as the connections between stable solution branches.Comment: 31 page

    Numerical bifurcation study of superconducting patterns on a square

    Full text link
    This paper considers the extreme type-II Ginzburg-Landau equations that model vortex patterns in superconductors. The nonlinear PDEs are solved using Newton's method, and properties of the Jacobian operator are highlighted. Specifically, it is illustrated how the operator can be regularized using an appropriate phase condition. For a two-dimensional square sample, the numerical results are based on a finite-difference discretization with link variables that preserves the gauge invariance. For two exemplary sample sizes, a thorough bifurcation analysis is performed using the strength of the applied magnetic field as a bifurcation parameter and focusing on the symmetries of this system. The analysis gives new insight in the transitions between stable and unstable states, as well as the connections between stable solution branches.Comment: 31 page

    Complex Patterns in Extended Oscillatory Systems

    Get PDF
    Ausgedehnte dissipative Systeme können fernab vom thermodynamischen Gleichgewicht instabil gegenĂŒber Oszillationen bzw. Wellen oder raumzeitlichem Chaos werden. Die komplexe Ginzburg-Landau Gleichung (CGLE) stellt ein universelles Modell zur Beschreibung dieser raumzeitlichen Strukturen dar. Diese Arbeit ist der theoretischen Analyse komplexer Muster gewidmet. Mittels numerischer Bifurkations- und StabilitĂ€tsanalyse werden InstabilitĂ€ten einfacher Muster identifiziert und neuartige Lösungen der CGLE bestimmt. Modulierte Amplitudenwellen (MAW) und Super-Spiralwellen sind Beispiele solcher komplexer Muster. MAWs können in hydrodynamischen Experimenten und Super-Spiralwellen in der Belousov-Zhabotinsky-Reaktion beobachtet werden. Der GrenzĂŒbergang von Phasen- zu Defektchaos wird durch den Existenzbereich der MAWs erklĂ€rt. Mittels der selben numerischen Methoden wird Bursting vom Fold-Hopf-Typ in einem Modell der KalziumsignalĂŒbertragung in Zellen identifiziert

    Continuum theory of partially fluidized granular flows

    Full text link
    A continuum theory of partially fluidized granular flows is developed. The theory is based on a combination of the equations for the flow velocity and shear stresses coupled with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this theory to several important granular problems: avalanche flow in deep and shallow inclined layers, rotating drums and shear granular flows between two plates. We carry out quantitative comparisons between the theory and experiment.Comment: 28 pages, 23 figures, submitted to Phys. Rev.
    • 

    corecore