1,063 research outputs found

    Linear Precoders for Non-Regenerative Asymmetric Two-way Relaying in Cellular Systems

    Full text link
    Two-way relaying (TWR) reduces the spectral-efficiency loss caused in conventional half-duplex relaying. TWR is possible when two nodes exchange data simultaneously through a relay. In cellular systems, data exchange between base station (BS) and users is usually not simultaneous e.g., a user (TUE) has uplink data to transmit during multiple access (MAC) phase, but does not have downlink data to receive during broadcast (BC) phase. This non-simultaneous data exchange will reduce TWR to spectrally-inefficient conventional half-duplex relaying. With infrastructure relays, where multiple users communicate through a relay, a new transmission protocol is proposed to recover the spectral loss. The BC phase following the MAC phase of TUE is now used by the relay to transmit downlink data to another user (RUE). RUE will not be able to cancel the back-propagating interference. A structured precoder is designed at the multi-antenna relay to cancel this interference. With multiple-input multiple-output (MIMO) nodes, the proposed precoder also triangulates the compound MAC and BC phase MIMO channels. The channel triangulation reduces the weighted sum-rate optimization to power allocation problem, which is then cast as a geometric program. Simulation results illustrate the effectiveness of the proposed protocol over conventional solutions.Comment: 30 pages, 7 figures, submitted to IEEE Transactions on Wireless Communication

    Degrees of Freedom for the MIMO Multi-way Relay Channel

    Full text link
    This paper investigates the degrees of freedom (DoF) of the L-cluster, K-user MIMO multi-way relay channel, where users in each cluster wish to exchange messages within the cluster, and they can only communicate through the relay. A novel DoF upper bound is derived by providing users with carefully designed genie information. Achievable DoF is identified using signal space alignment and multiple-access transmission. For the two-cluster MIMO multi-way relay channel with two users in each cluster, DoF is established for the general case when users and the relay have arbitrary number of antennas, and it is shown that the DoF upper bound can be achieved using signal space alignment or multiple-access transmission, or a combination of both. The result is then generalized to the three user case. For the L-cluster K-user MIMO multi-way relay channel in the symmetric setting, conditions under which the DoF upper bound can be achieved are established. In addition to being shown to be tight in a variety of scenarios of interests of the multi-way relay channel, the newly derived upperbound also establishes the optimality of several previously established achievable DoF results for multiuser relay channels that are special cases of the multi-way relay channel.Comment: submitted to IEEE Transactions on Information Theor
    • …
    corecore