777 research outputs found

    Visual experience of 3D TV

    Get PDF

    Sparse representation based stereoscopic image quality assessment accounting for perceptual cognitive process

    Get PDF
    In this paper, we propose a sparse representation based Reduced-Reference Image Quality Assessment (RR-IQA) index for stereoscopic images from the following two perspectives: 1) Human visual system (HVS) always tries to infer the meaningful information and reduces uncertainty from the visual stimuli, and the entropy of primitive (EoP) can well describe this visual cognitive progress when perceiving natural images. 2) Ocular dominance (also known as binocularity) which represents the interaction between two eyes is quantified by the sparse representation coefficients. Inspired by previous research, the perception and understanding of an image is considered as an active inference process determined by the level of “surprise”, which can be described by EoP. Therefore, the primitives learnt from natural images can be utilized to evaluate the visual information by computing entropy. Meanwhile, considering the binocularity in stereo image quality assessment, a feasible way is proposed to characterize this binocular process according to the sparse representation coefficients of each view. Experimental results on LIVE 3D image databases and MCL database further demonstrate that the proposed algorithm achieves high consistency with subjective evaluation

    Binocular Rivalry Oriented Predictive Auto-Encoding Network for Blind Stereoscopic Image Quality Measurement

    Full text link
    Stereoscopic image quality measurement (SIQM) has become increasingly important for guiding stereo image processing and commutation systems due to the widespread usage of 3D contents. Compared with conventional methods which are relied on hand-crafted features, deep learning oriented measurements have achieved remarkable performance in recent years. However, most existing deep SIQM evaluators are not specifically built for stereoscopic contents and consider little prior domain knowledge of the 3D human visual system (HVS) in network design. In this paper, we develop a Predictive Auto-encoDing Network (PAD-Net) for blind/No-Reference stereoscopic image quality measurement. In the first stage, inspired by the predictive coding theory that the cognition system tries to match bottom-up visual signal with top-down predictions, we adopt the encoder-decoder architecture to reconstruct the distorted inputs. Besides, motivated by the binocular rivalry phenomenon, we leverage the likelihood and prior maps generated from the predictive coding process in the Siamese framework for assisting SIQM. In the second stage, quality regression network is applied to the fusion image for acquiring the perceptual quality prediction. The performance of PAD-Net has been extensively evaluated on three benchmark databases and the superiority has been well validated on both symmetrically and asymmetrically distorted stereoscopic images under various distortion types

    Stereoscopic video quality assessment using binocular energy

    Get PDF
    Stereoscopic imaging is becoming increasingly popular. However, to ensure the best quality of experience, there is a need to develop more robust and accurate objective metrics for stereoscopic content quality assessment. Existing stereoscopic image and video metrics are either extensions of conventional 2D metrics (with added depth or disparity information) or are based on relatively simple perceptual models. Consequently, they tend to lack the accuracy and robustness required for stereoscopic content quality assessment. This paper introduces full-reference stereoscopic image and video quality metrics based on a Human Visual System (HVS) model incorporating important physiological findings on binocular vision. The proposed approach is based on the following three contributions. First, it introduces a novel HVS model extending previous models to include the phenomena of binocular suppression and recurrent excitation. Second, an image quality metric based on the novel HVS model is proposed. Finally, an optimised temporal pooling strategy is introduced to extend the metric to the video domain. Both image and video quality metrics are obtained via a training procedure to establish a relationship between subjective scores and objective measures of the HVS model. The metrics are evaluated using publicly available stereoscopic image/video databases as well as a new stereoscopic video database. An extensive experimental evaluation demonstrates the robustness of the proposed quality metrics. This indicates a considerable improvement with respect to the state-of-the-art with average correlations with subjective scores of 0.86 for the proposed stereoscopic image metric and 0.89 and 0.91 for the proposed stereoscopic video metrics
    • …
    corecore