1,552 research outputs found

    Content based image retrieval using unclean positive examples

    Get PDF
    Conventional content-based image retrieval (CBIR) schemes employing relevance feedback may suffer from some problems in the practical applications. First, most ordinary users would like to complete their search in a single interaction especially on the web. Second, it is time consuming and difficult to label a lot of negative examples with sufficient variety. Third, ordinary users may introduce some noisy examples into the query. This correspondence explores solutions to a new issue that image retrieval using unclean positive examples. In the proposed scheme, multiple feature distances are combined to obtain image similarity using classification technology. To handle the noisy positive examples, a new two-step strategy is proposed by incorporating the methods of data cleaning and noise tolerant classifier. The extensive experiments carried out on two different real image collections validate the effectiveness of the proposed scheme.<br /

    Information fusion in content based image retrieval: A comprehensive overview

    Get PDF
    An ever increasing part of communication between persons involve the use of pictures, due to the cheap availability of powerful cameras on smartphones, and the cheap availability of storage space. The rising popularity of social networking applications such as Facebook, Twitter, Instagram, and of instant messaging applications, such as WhatsApp, WeChat, is the clear evidence of this phenomenon, due to the opportunity of sharing in real-time a pictorial representation of the context each individual is living in. The media rapidly exploited this phenomenon, using the same channel, either to publish their reports, or to gather additional information on an event through the community of users. While the real-time use of images is managed through metadata associated with the image (i.e., the timestamp, the geolocation, tags, etc.), their retrieval from an archive might be far from trivial, as an image bears a rich semantic content that goes beyond the description provided by its metadata. It turns out that after more than 20 years of research on Content-Based Image Retrieval (CBIR), the giant increase in the number and variety of images available in digital format is challenging the research community. It is quite easy to see that any approach aiming at facing such challenges must rely on different image representations that need to be conveniently fused in order to adapt to the subjectivity of image semantics. This paper offers a journey through the main information fusion ingredients that a recipe for the design of a CBIR system should include to meet the demanding needs of users

    Image retrieval using noisy query

    Get PDF
    In conventional content based image retrieval (CBIR) employing relevance feedback, one implicit assumption is that both pure positive and negative examples are available. However it is not always true in the practical applications of CBIR. In this paper, we address a new problem of image retrieval using several unclean positive examples, named noisy query, in which some mislabeled images or weak relevant images present. The proposed image retrieval scheme measures the image similarity by combining multiple feature distances. Incorporating data cleaning and noise tolerant classifier, a twostep strategy is proposed to handle noisy positive examples. Experiments carried out on a subset of Corel image collection show that the proposed scheme outperforms the competing image retrieval schemes.<br /

    Measuring Semantic Similarity: Representations and Methods

    Get PDF
    This dissertation investigates and proposes ways to quantify and measure semantic similarity between texts. The general approach is to rely on linguistic information at various levels, including lexical, lexico-semantic, and syntactic. The approach starts by mapping texts onto structured representations that include lexical, lexico-semantic, and syntactic information. The representation is then used as input to methods designed to measure the semantic similarity between texts based on the available linguistic information.While world knowledge is needed to properly assess semantic similarity of texts, in our approach world knowledge is not used, which is a weakness of it.We limit ourselves to answering the question of how successfully one can measure the semantic similarity of texts using just linguistic information.The lexical information in the original texts is retained by using the words in the corresponding representations of the texts. Syntactic information is encoded using dependency relations trees, which represent explicitly the syntactic relations between words. Word-level semantic information is relatively encoded through the use of semantic similarity measures like WordNet Similarity or explicitly encoded using vectorial representations such as Latent Semantic Analysis (LSA). Several methods are being studied to compare the representations, ranging from simple lexical overlap, to more complex methods such as comparing semantic representations in vector spaces as well as syntactic structures. Furthermore, a few powerful kernel models are proposed to use in combination with Support Vector Machine (SVM) classifiers for the case in which the semantic similarity problem is modeled as a classification task

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives
    • …
    corecore