2,007 research outputs found

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Wireless Sensor Networks: Challenges Ahead

    Get PDF
    The aim of this paper is to analyze the different Wireless Sensor Network (WSN) transport protocols byidentifying various experimental parameters in order to undertake a comparative evaluation. To build the groundwork, we first discuss the generic design for a transport protocol based on three key concepts; congestion control, reliability support and priority support. The basis of this design was developed by assessing several aspects of numerous transport protocols. However they all using different set of parameters and settings and hence it is difficult to benchmark one against the other. In this paper, we discuss the simulation settings like packet size, number of exploited sensors and their distribution in the field, buffer size, coverage area and power levels

    Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    Get PDF
    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Powerful mobile nodes for enhancing wireless sensor networks\u27 security and lifetime

    Get PDF
    To maintain the proper functioning of critical applications based on Wireless Sensor Networks, we must provide an acceptable level of security while taking into account limited capabilities of the sensors. In this paper we proposed a mobile approach to secure data exchanged by structured nodes in cluster. The approach is based on mobile nodes with significant calculation and energy resources that allow cryptographic key management and periodic rekeying. However, mobility in wireless sensor networks aims to increase the security and lifetime of the entire network. The technical methods used in this paper are based on cryptography elliptic curves and key management through a balanced binary tree. To compare the performance of the proposed approach with other mobile algorithms, we focused on the following metrics: the energy consumed by normal sensors and cluster heads, the number of packets exchanged during key installation, time to generate and distribute cryptographic keys, and the memory used by the different sensors to store keys

    A Reverse Localization Scheme for Underwater Acoustic Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time

    Framework for integrated oil pipeline monitoring and incident mitigation systems

    Get PDF
    Wireless Sensor Nodes (motes) have witnessed rapid development in the last two decades. Though the design considerations for Wireless Sensor Networks (WSNs) have been widely discussed in the literature, limited investigation has been done for their application in pipeline surveillance. Given the increasing number of pipeline incidents across the globe, there is an urgent need for innovative and effective solutions for deterring the incessant pipeline incidents and attacks. WSN pose as a suitable candidate for such solutions, since they can be used to measure, detect and provide actionable information on pipeline physical characteristics such as temperature, pressure, video, oil and gas motion and environmental parameters. This paper presents specifications of motes for pipeline surveillance based on integrated systems architecture. The proposed architecture utilizes a Multi-Agent System (MAS) for the realization of an Integrated Oil Pipeline Monitoring and Incident Mitigation System (IOPMIMS) that can effectively monitor and provide actionable information for pipelines. The requirements and components of motes, different threats to pipelines and ways of detecting such threats presented in this paper will enable better deployment of pipeline surveillance systems for incident mitigation. It was identified that the shortcomings of the existing wireless sensor nodes as regards their application to pipeline surveillance are not effective for surveillance systems. The resulting specifications provide a framework for designing a cost-effective system, cognizant of the design considerations for wireless sensor motes used in pipeline surveillance

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE

    Wireless Sensor Network transport protocol: A critical review

    Get PDF
    The transport protocols for Wireless Sensor Network (WSN) play vital role in achieving the high performance together with longevity of the network. The researchers are continuously contributing in developing new transport layer protocols based on different principles and architectures enabling different combinations of technical features. The uniqueness of each new protocol more or less lies in these functional features, which can be commonly classified based on their proficiencies in fulfilling congestion control, reliability support, and prioritization. The performance of these protocols has been evaluated using dissimilar set of experimental/simulation parameters, thus there is no well defined benchmark for experimental/simulation settings. The researchers working in this area have to compare the performance of the new protocol with the existing protocols to prove that new protocol is better. However, one of the major challenges faced by the researchers is investigating the performance of all the existing protocols, which have been tested in different simulation environments. This leads the significance of having a well-defined benchmark for the experimental/simulation settings. If the future researchers simulate their protocols according to a standard set of simulation/experimental settings, the performance of those protocols can be directly compared with each other just using the published simulation results.This article offers a twofold contribution to support researchers working in the area of WSN transport protocol design. First, we extensively review the technical features of existing transport protocols and suggest a generic framework for a WSN transport protocol, which offers a strong groundwork for the new researchers to identify the open research issues. Second we analyse the experimental settings, focused application areas and the addressed performance criteria of existing protocols; thus suggest a benchmark of experimental/simulation settings for evaluating prospective transport protocols
    corecore