6,212 research outputs found

    String Approach to QCD Quarks in Fundamental Representations

    Full text link
    Straightforward use of AdS/CFT correspondence can give QCD with quarks in adjoint representations. Using an asymmetric orbifold approach we obtain nonsupersymmetric QCD with four quark flavors in fundamental representations of color.Comment: 8 pages, 1 figure. Talk at Eighth Workshop on Nonperturbative Quantum Chromodynamics, l'Institut Astrophysique de Paris, June 7-11, 200

    WR 110: A Single Wolf-Rayet Star With Corotating Interaction Regions In Its Wind?

    Get PDF
    A 30-day contiguous photometric run with the MOST satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 +/- 0.55 days along with a number of harmonics at periods P/n, with n ~ 2,3,4,5 and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic RV studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ~ 0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base of, a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ~ two thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.Comment: 25 pages, 8 figures, 2 tables, accepted in Ap

    Long-term magnetic field stability of Vega

    Full text link
    We present new spectropolarimetric observations of the normal A-type star Vega, obtained during the summer of 2010 with NARVAL at T\'elescope Bernard Lyot (Pic du Midi Observatory). This new time-series is constituted of 615 spectra collected over 6 different nights. We use the Least-Square-Deconvolution technique to compute, from each spectrum, a mean line profile with a signal-to-noise ratio close to 20,000. After averaging all 615 polarized observations, we detect a circularly polarized Zeeman signature consistent in shape and amplitude with the signatures previously reported from our observations of 2008 and 2009. The surface magnetic geometry of the star, reconstructed using the technique of Zeeman-Doppler Imaging, agrees with the maps obtained in 2008 and 2009, showing that most recognizable features of the photospheric field of Vega are only weakly distorted by large-scale surface flows (differential rotation or meridional circulation).Comment: Proceedings of the conference "Stellar polarimetry: from birth to death", 2011 Jun 27-30, Madiso

    Evry Leon Schatzman

    Full text link
    This article describes the life and work of French astrophysicist Evry Schatzman (1920-2010). He was a pioneer in the study of white dwarfs during the 1940s and was one of the proponents of the wave heating theory of the solar corona. He made important contributions to the fields of internal stellar structure, novae, mechanisms of acceleration of cosmic rays, the role of turbulent diffusion in stellar evolution and its consequences for the lithium abundance, and the rate of solar neutrinos. Schatzman is mostly recognized as the creator of the French school of theoretical astrophysics. Although he was not the first theoretician of astrophysics in his country, he was the first to have felt the need for a rapid development of this subject in France, and the first to teach it and to guide the path of many young researchers. Many of them became involved, and some leaders, in space science.Comment: 5 pages. Published in Biographical Encyclopedia of Astronomers, Thomas Hockey (ed.), 201

    What Powers Lyman alpha Blobs?

    Get PDF
    Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact Array (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the radio with fluxes of 67+/-17 microJy and 77+/-16 microJy, respectively, and B5 is marginally detected at 3 sigma (51+/-16 microJy). For all detected sources, their radio positions are consistent with the central positions of the LABs. B6 and B7 are obviously also detected in the FIR. By fitting the data with different templates, we obtained redshifts of 2.200.35+0.30^{+0.30}_{-0.35} for B6 and 2.200.30+0.45^{+0.45}_{-0.30} for B7 which are consistent with the redshift of the lyman alpha emission within uncertainties, indicating that both FIR sources are likely associated with the LABs. The associated FIR emission in B6 and B7 and high star formation rates strongly favor star formation in galaxies as an important powering source for the lyman alpha emission in both LABs. However, the other two, B1 and B5, are predominantly driven by the active galactic nuclei or other sources of energy still to be specified, but not mainly by star formation. In general, the LABs are powered by quite diverse sources of energy.Comment: 7 pages and 3 figurs, accepted by A&
    corecore