52,176 research outputs found

    Structural rules in natural deduction with alternatives

    Get PDF
    Natural deduction with alternatives extends Gentzen–Prawitz-style natural deduction with a single structural addition: negatively signed assumptions, called alternatives. It is a mildly bilateralist, single-conclusion natural deduction proofsystem in which the connective rules are unmodified from the usual Prawitz introduction and elimination rules — the extension is purely structural. This framework is general: it can be used for (1) classical logic, (2) relevant logic without distribution, (3) affine logic, and (4) linear logic, keeping the connective rules fixed, and varying purely structural rules. The key result of this paper is that the two principles that introduce kindsofirrelevanceto natural deduction proofs: (a) the rule of explosion (from acontradiction, anything follows); and (b) the structural rule of vacuous discharge;are shown to be two sides of a single coin, in the same way that they correspond tothe structural rule of weakening in the sequent calculus. The paper also includes a discussion of assumption classes, and how they can play a role in treating additive connectives in substructural natural deduction.Publisher PDFPeer reviewe

    The deduction theorem for strong propositional proof systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NP-pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NP-pairs

    The Deduction Theorem for Strong Propositional Proof Systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NPUnknown control sequence '\mathsf' -pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NPUnknown control sequence '\mathsf' -pairs

    A comparison of techniques for learning and using mathematics and a study of their relationship to logical principles

    Get PDF
    Various techniques exist for learning mathematical concepts, like experimentation and exploration, respectively using mathematics, like modelling and simulation. For a clear application of such techniques in mathematics education, there should be a clear distinction between these techniques. A recently developed theory of fuzzy concepts can be applied to analyse the four mentioned concepts. For all four techniques one can pose the question of their relationship to deduction, induction and abduction as logical principles. An empirical study was conducted with 12-13 aged students, aiming at checking the three reasoning processes

    Compilability of Abduction

    Full text link
    Abduction is one of the most important forms of reasoning; it has been successfully applied to several practical problems such as diagnosis. In this paper we investigate whether the computational complexity of abduction can be reduced by an appropriate use of preprocessing. This is motivated by the fact that part of the data of the problem (namely, the set of all possible assumptions and the theory relating assumptions and manifestations) are often known before the rest of the problem. In this paper, we show some complexity results about abduction when compilation is allowed

    Epistemic virtues, metavirtues, and computational complexity

    Get PDF
    I argue that considerations about computational complexity show that all finite agents need characteristics like those that have been called epistemic virtues. The necessity of these virtues follows in part from the nonexistence of shortcuts, or efficient ways of finding shortcuts, to cognitively expensive routines. It follows that agents must possess the capacities – metavirtues –of developing in advance the cognitive virtues they will need when time and memory are at a premium
    corecore