5,254 research outputs found

    Low-Effort Specification Debugging and Analysis

    Get PDF
    Reactive synthesis deals with the automated construction of implementations of reactive systems from their specifications. To make the approach feasible in practice, systems engineers need effective and efficient means of debugging these specifications. In this paper, we provide techniques for report-based specification debugging, wherein salient properties of a specification are analyzed, and the result presented to the user in the form of a report. This provides a low-effort way to debug specifications, complementing high-effort techniques including the simulation of synthesized implementations. We demonstrate the usefulness of our report-based specification debugging toolkit by providing examples in the context of generalized reactivity(1) synthesis.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Synthesis of Switching Protocols from Temporal Logic Specifications

    Get PDF
    We propose formal means for synthesizing switching protocols that determine the sequence in which the modes of a switched system are activated to satisfy certain high-level specifications in linear temporal logic. The synthesized protocols are robust against exogenous disturbances on the continuous dynamics. Two types of finite transition systems, namely under- and over-approximations, that abstract the behavior of the underlying continuous dynamics are defined. In particular, we show that the discrete synthesis problem for an under-approximation can be formulated as a model checking problem, whereas that for an over-approximation can be transformed into a two-player game. Both of these formulations are amenable to efficient, off-the-shelf software tools. By construction, existence of a discrete switching strategy for the discrete synthesis problem guarantees the existence of a continuous switching protocol for the continuous synthesis problem, which can be implemented at the continuous level to ensure the correctness of the nonlinear switched system. Moreover, the proposed framework can be straightforwardly extended to accommodate specifications that require reacting to possibly adversarial external events. Finally, these results are illustrated using three examples from different application domains

    Solving Stochastic B\"uchi Games on Infinite Arenas with a Finite Attractor

    Full text link
    We consider games played on an infinite probabilistic arena where the first player aims at satisfying generalized B\"uchi objectives almost surely, i.e., with probability one. We provide a fixpoint characterization of the winning sets and associated winning strategies in the case where the arena satisfies the finite-attractor property. From this we directly deduce the decidability of these games on probabilistic lossy channel systems.Comment: In Proceedings QAPL 2013, arXiv:1306.241

    Compositional software verification based on game semantics

    Get PDF
    One of the major challenges in computer science is to put programming on a firmer mathematical basis, in order to improve the correctness of computer programs. Automatic program verification is acknowledged to be a very hard problem, but current work is reaching the point where at least the foundationalÃ?· aspects of the problem can be addressed and it is becoming a part of industrial software development. This thesis presents a semantic framework for verifying safety properties of open sequ;ptial programs. The presentation is focused on an Algol-like programming language that embodies many of the core ingredients of imperative and functional languages and incorporates data abstraction in its syntax. Game semantics is used to obtain a compositional, incremental way of generating accurate models of programs. Model-checking is made possible by giving certain kinds of concrete automata-theoretic representations of the model. A data-abstraction refinement procedure is developed for model-checking safety properties of programs with infinite integer types. The procedure starts by model-checking the most abstract version of the program. If no counterexample, or a genuine one, is found, the procedure terminates. Otherwise, it uses a spurious counterexample to refine the abstraction for the next iteration. Abstraction refinement, assume-guarantee reasoning and the L* algorithm for learning regular languages are combined to yield a procedure for compositional verification. Construction of a global model is avoided using assume-guarantee reasoning and the L* algorithm, by learning assumptions for arbitrary subprograms. An implementation based on the FDR model checker for the CSP process algebra demonstrates practicality of the methods
    • 

    corecore